
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014 2555

1077-2626 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Advection-Based Sparse Data Management for Visualizing

Unsteady Flow

Hanqi Guo, Student Member, IEEE, Jiang Zhang, Richen Liu, Lu Liu, Xiaoru Yuan, Member, IEEE,

Jian Huang, Member, IEEE, Xiangfei Meng, and Jingshan Pan

Abstract—When computing integral curves and integral surfaces for large-scale unsteady flow fields, a major bottleneck is the
widening gap between data access demands and the available bandwidth (both I/O and in-memory). In this work, we explore a novel
advection-based scheme to manage flow field data for both efficiency and scalability. The key is to first partition flow field into blocklets
(e.g. cells or very fine-grained blocks of cells), and then (pre)fetch and manage blocklets on-demand using a parallel key-value store.
The benefits are (1) greatly increasing the scale of local-range analysis (e.g. source-destination queries, streak surface generation)
that can fit within any given limit of hardware resources; (2) improving memory and I/O bandwidth-efficiencies as well as the scalability
of naive task-parallel particle advection. We demonstrate our method using a prototype system that works on workstation and also in
supercomputing environments. Results show significantly reduced I/O overhead compared to accessing raw flow data, and also high
scalability on a supercomputer for a variety of applications.

Index Terms—Flow visualization, Data management, High performance visualization, Key-value store

1 INTRODUCTION

Simulation of unsteady flow is key to many domains of computational
research. As computing power at large scale has become very afford-
able, large and more complex unsteady flow data are nowadays preva-
lent. From the most practical point of view, however, the comput-
ing resources available for scientific visualization are typically much
smaller than those used for the original simulations [3], thereby creat-
ing a challenge. That is, how to effectively carry out state-of-the-art
flow visualization, for example to visualize a tera-byte level unsteady
flow, without requiring a full-scale supercomputer.

In this work we focus on particle advection, which is a fundamen-
tal part of many flow visualization and analysis methods. Typical
examples include texture-based methods [23], geometry-based meth-
ods [25], Finite-Time Lyapunov Exponent (FTLE) analysis [18] and
source-destination queries [22]. Among these methods, data access is
the known bottleneck of performance, scalability and space-efficiency.
Many existing implementations of advection-based flow visualization

• Hanqi Guo is with Key Laboratory of Machine Perception (Ministry of

Education), School of EECS, and Center for Computational Science and

Engineering, Peking University. E-mail: hanqi.guo@pku.edu.cn.

• Jiang Zhang is with Key Laboratory of Machine Perception (Ministry of

Education), School of EECS, and Center for Computational Science and

Engineering, Peking University. E-mail: jiang.zhang@pku.edu.cn.

• Richen Liu is with Key Laboratory of Machine Perception (Ministry of

Education), School of EECS, Peking University. E-mail:

richen.liu@pku.edu.cn.

• Lu Liu is with Key Laboratory of Machine Perception (Ministry of

Education), School of EECS, Peking University. E-mail:

lu.liu@pku.edu.cn.

• Xiaoru Yuan is with Key Laboratory of Machine Perception (Ministry of

Education), School of EECS, and Center for Computational Science and

Engineering, Peking University. E-mail: xiaoru.yuan@pku.edu.cn.

• Jian Huang is with Department of Electrical Engineering and Computer

Science, University of Tennessee, Knoxville. E-mail:

huangj@eecs.utk.edu.

• Xiangfei Meng is with National Supercomputer Center in Tianjin, Binhai,

Tianjin, China. E-mail: mengxf@nscc-tj.gov.cn.

• Jingshan Pan is with National Supercomputer Center in Jinan, Shandong,

China. E-mail: panjsh@sdas.org.

store data based on the same grid as used by the original simulation.
We address the multi-faceted bottleneck by changing the grid-centered
data model to a key-value store based sparse data model.

We aim at developing a general mechanism by which fast, scalable
visualization of large unsteady flow can be carried out on a relatively
commonly available type of computing resource. For instance, as
demonstrated in Section 5, we performed streak surface computation
on a 860GB turbulent flow in 92 seconds (including I/O time) using
64 processors on a system that provided only ∼100MB/sec sustained
I/O bandwidth. During the entire process, only 1% of the memory is
used on each processing core. We also report similar results on sev-
eral different kinds of platforms as well as for other use cases such as
FTLE computation. This unprecedented result demonstrates that large
scale unsteady flow analysis can be effectively and generally applied,
requiring only a very frugal budget of computing resource. Poten-
tial use cases include extreme scale in-situ visualization and when the
flow analysis application has to be carried out on-demand on a heavily
loaded computing system.

The rationale of our research is based on a few observations. First,
although the entire flow dataset is large, the working set is very small
during particle advection. This is true even in large scale parallel set-
tings. Second, while data access patterns appear random in unsteady
flow visualization, it is practical and reliable to discover the working
set on-demand by predicting data access needs based on current direc-
tions of advection. Third, with data partition as a standard practice in
parallel flow visualization, changing from coarse-grained partition to
fine-grained partition is feasible, especially when modern particle trac-
ers increasingly employ local task queues to manage the start, stop,
and communication of advection tasks. To this end, key-value store
based sparse data management can greatly reduce the memory foot-
print of a parallel particle advection run, adapt well to the on-demand
data access needs, and can be efficiently managed without impeding
performance or scalability.

Data reorganization has been proven successful in mesh data and
unstructured data management [36, 1]. In our method, the working
set discovered at runtime is managed on the granularity of blocklets,
which contain single cells or fine-grained blocks of cells in unsteady
flow. The functional architecture of our methodology has two com-
ponents: (1) a parallel key-value store that collectively and predic-
tively manages blocklet I/O to maximally hide the I/O latency from
advection computation, and (2) a group of completely independent
task-parallel tracers. Every advection computing task is assigned to
one and only one tracer, while each tracer owns and manages a large
number of advection tasks in a task queue. Tracers request data by

For information on obtaining reprints of this article, please send

e-mail to: tvcg@computer.org.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014 ate of
publication 2014; date of current version 2014.11 Aug. 9 Nov.

D.

Digital Object Identifier 10.1109/TVCG.2014.23464 881

2556 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

querying the parallel key-value store, and keep the blocklets received
in a local LRU cache.

In the past, the field has made great progress on improving the speed
and scalability of unsteady flow visualization. For example, with I/O
potentially takes up 90% time in a typical visualization task [21], re-
searchers improved efficiency by using irregular data partition [12] and
by optimizing file layout according to flow features [10, 11]. Load-
balancing is difficult because optimal task distribution is hard to pre-
dict in unsteady flow visualization. Researchers improved scalability
by using a multi-tier task distribution scheme that minimized global
barriers and optimized the efficiency of task redistribution [22].

Recent implementations of large-scale unsteady flow analyses com-
monly employ static data distribution, and intermix data parallelism
with task parallelism. In part, the key consideration is that moving
large amounts of data on the fly is overwhelmingly expensive. This
trend is true both on large supercomputer tier platforms and also on
small to medium sized institutional HPC platforms. Regardless of sce-
nario, great efforts are needed to fine tune both the algorithms and the
configuration of the runs for best performance.

In contrast, our method uses static task distribution and employs
task parallelism, by accurately and efficiently discovering the work-
ing set and passing data from parallel key-value store to tracers on-
demand. Our implementation of parallel key-value store effectively
manages in-core data and reduces the latency of data access in gen-
eral. On top of that, our method constructs a graph based predictive
hint model to accurately prefetch data from high a performance sys-
tem (i.e. parallel file system or SSD enhanced file system) with built-in
flow control, thereby effectively hides latency due to on-demand disk
I/O.

In the remainder of the paper, we describe the background in Sec-
tion 2. The sparse data management and the implementation details
are described in Sections 3 and 4, respectively. We demonstrate the
application cases in Section 5, and then conclude in Section 6.

2 BACKGROUND

2.1 Advection-based Flow Visualization

Particle advection traces integral curves from user specified seed
points. It is widely used in flow visualization methods, such as texture-
based methods [23], geometry-based [25] methods, and flow feature
extraction and tracking [32]. We divide these advection-based meth-
ods into two categorizes, namely local-range and full-range analysis.

Local-range analysis seeds locally or sparsely in a given spatiotem-
poral domain. For example, source-destination analysis is a local-
range analysis useful for visualizing contaminant transport between
two regions. For another example, flow surfaces [14] are ideal to il-
lustrate unsteady flows as they directly show the behaviors of coherent
moving particles.

Full-range analysis densely seeds over the entire simulation do-
main. In texture-based flow visualization, such as Line Integral
Convolution (LIC) [7] and Unsteady Flow LIC (UFLIC) [34], inte-
gral curves are computed over all spatiotemporal samples in the do-
main. Densely seeded integral curves are also used for extracting La-
grangian Coherent Structures (LCS) with Finite-Time Lyapnov Expo-
nents (FTLE) [15], for identifying differences between ensemble flow
simulation results [17], and for selecting flow features according to
pathline attributes [16]. Full-range analysis is computationally expen-
sive, even with acceleration methods such as seeding with adaptive
refinement [2] and reusing the already calculated parts [19].

This work improves the performance, scalability as well as space
efficiency for both the local-range and the full-range analysis using
blocklet-based sparse data management.

2.2 Parallel Particle Tracing

In general, parallel particle tracing methods can be categorized as task-
parallelism, data-parallelism and hybrid methods that combine task-
and data-parallelism.

Data-parallel particle tracing relies on data partitioning and distri-
bution for load-balancing. For example, blocks can be statically as-
signed by round-robin [31], hierarchical clustered [37], partitioned ac-

cording to boundaries of flow features [12], or partitioned over time
steps to reduce memory cost in unsteady flow FTLE computation [28].
Task-parallel particle tracing revolves load-balancing by scheduling,
such as workload estimation [29], dynamic load balancing [33, 27],
etc. On-demand strategies are also used to reduce I/O costs and com-
munication [8]. More recently, hybrid methods are considered to be
more scalable. DStep [22] minimizes global barriers with a multi-tier
task distribution and static data distribution. More recently in [17],
Guo et al. demonstrated unprecedented ensemble flow analysis in La-
grangian scheme by extending DStep [22].

Common among parallel particle tracing methods, I/O is the typical
bottleneck for scalability and performance. A few approaches have
been proposed to improve data partitioning, including the block-based
methods [31, 29], fine-grained partitioning [37, 12]. Optimized flow
file layout can also be used to hide the latency of data retrieval [10, 11].

In this work, by transforming the in-core data management of parti-
cle advection to one using large-scale parallel key-value store, we have
been able to further reduce the granularity of data retrieval to blocklets,
and achieve better utilization of I/O and communication bandwidth.

2.3 Key-Value Store and Data Prefetching

Key-value store is a simple, general and powerful data model for data
retrieval. It is widely used in NoSQL databases for big data applica-
tions in industry settings. Key-value store techniques can be roughly
categorized into RAM cache vs. persistent store.

RAM cache key-value store could be as simple as a hash table, and
there are also a series of production systems such as Memcached1 and
Redis2. For real-time and high-throughput applications, distributed
key-value store is routinely used. Distributed hash table implemen-
tation in high-end HPC environments has been reported in the litera-
ture [24]. Persistent key-value store is used when data cannot fit into
the memory, or it is necessary to persistently store the data. Popular
solutions include BigTable[9], LevelDB3, and Cassandra4, etc.

A key efficiency technique among key-value store systems is Sorted
String Tables (SST), which is based on log-structured storage [30]. In
our work, we have implemented our own SST and extended it to work
with global and parallel file systems. In addition to the traditional key-
value store data models, we further developed a graph-based method to
capture advection-based predictions of on-demand data access needs.

Our work is related to data caching and prefetching techniques.
In parallel applications, I/O signatures are automatically traced and
used to guide prefetching in MPI-IO [6]. Pre-execution techniques are
also leveraged to hide parallel I/O latencies without perceivable pat-
terns [13]. In our work, the data access patterns which are based on
flow advection, are extracted and reused during the runtime. Although
prefetching is usually beneficial, over-prefetch that saturations the sys-
tem could impact performance. As demonstrated for remote visualiza-
tion in [35], our system also needs to adaptively optimize prefetching
parameters at runtime.

3 ADVECTION-BASED SPARSE DATA MANAGEMENT FOR PAR-
TICLE ADVECTION

Figure 1 illustrates the pipeline of our approach. The central part is
sparse data management, which provides high performance data re-
trieval for the particle tracers in visualization and analysis applica-
tions. Our pipeline is generally applicable to post-processing (e.g. the
input is files containing raw flow field data), and in-situ visualization
as well as co-processing, where the input to our pipeline is unsteady
flow data from live simulations. The data conversion process partitions
the raw data into blocklets, which are indexed by their spatiotemporal
locations. Tracer processes focus on advection computation, request
blocklets by spatiotemporal indices, but are otherwise not involved in
concurrently managing I/O, transfer and in-core storage aspects of the
unsteady flow data.

1http://memcached.org
2http://redis.io
3http://code.google.com/p/leveldb
4http://cassandra.apache.org

Sparse Data Management

Field Lines for

Visualization &

Analysis

(Parallel) Particle

Tracing

Data Conversion

Flow Simulation

Flow Data
U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

Sparse Data Management

Blocklets

Access Patterns

Parallel

K-V Store

Prefetching

Hint Graph

Prefetching

...

Fine-Grained

Partitioning

Fig. 1. The pipeline of the advection-based sparse data management. Raw data from storage or simulation is converted by fine-grained data
partitioning, and then handled by the sparse data management system. The system provides high performance data access with prefetching,
which brings both efficiency and scalability for field line tracing in various visualization tasks. The access patterns can be updated in runtime and
effectively reused in later runs.

There are two mechanisms to manage data flow in our system,
namely the parallel key-value store and the prefetching. The paral-
lel key-value store is efficient and scalable. Better performance could
be achieved by adding more computing resources, e.g. cores, mem-
ory, and I/O bandwidth, etc. The prefetching in our system uses a
graph based model to capture and represent access patterns. We refer
to this graph as prefetching hints. The prefetching hints are reusable
and constructed on-the-fly. When prefetching hints have been grad-
ually added as advection computation progresses, the reusability of
prefetching hints considerably expedites data access.

3.1 Data Flow and Process Models

As shown in Figure 2, data primarily flows from the parallel key-value
store to tracers. The required data entries (e.g. cells, blocklets) are
fetched from the parallel key-value store, which performs actual data
I/O from the file system. Tracers update the parallel key-value store by
defining new prefetching hints, so that the prefetch hints graph are con-
tinuously constructed and expanded. Each tracer also employs a sim-
plistic LRU-cache (implemented as a simple RAM key-value store)
for faster data access. In this regard, data access by a tracer is quite
similar to data access on a CPU with a multi-layer cache, where if
the required entries are not cached by the tracer, then it takes a longer
time to fetch from the parallel key-value store. If the parallel key-
value store does not have the data either, then the data will be fetched
from the file system and take an even longer period of time. Of course
the parallel key-value store leverages the hints graph to aggressively
prefetch to avoid cache-miss, while also implementing flow-control to
avoid congesting the I/O system.

Parallelism is achieved with distributed processes and message
passing. There are two types of processes: tracer processes and key-
value store processes (k-v processes). Tracer processes and k-v pro-
cesses use the same runtime API (Section 3.3) to request/retrieve and
send data entries.

For load-balance, k-v processes partition the key space by hash-
ing and round-robin assignment. A key k is assigned to a k-v process
according to: i = hash(k) mod n, where n is the number of k-v pro-
cesses. Data requests from tracers are directly sent to the correspond-
ing k-v processes, via point-to-point communication.

In addition to data requests, a tracer can also issue a prefetch hint
as a chain of predicted data requests, where each request is identified
by a hash key in the same way as in real data requests. Every prefetch
hint is first sent to the k-v process in charge of the first key in the chain.
That k-v process processes the first prefetch request, and then recur-
sively forwards the remaining part of the chain to the k-v processes in
charge of the first remaining prefetch request. This forwarding pro-
cess iterates until the chain has been exhausted. After a blocklet has
been prefetched, the k-v process keeps that data and also forwards that
blocklet to the original tracer process that has requested that entry.

This process model is flexible for different environments. There
are three scenarios. The first is to run tracer and k-v processes in the

I/O Requests

Non-blocking

Queries

Local K-V Store ~1μs

Parallel

K-V Store
~100μs(*)

File System 0.1-10ms(*)

(*) Varies from different hardware & software configurations

MPI-IO

S� S� S� S�

K-V Store Processes

(*) Varies from different hardware & softwa

T� T� T�

Tracer Processes

Fig. 2. The software architecture of the system. There are two kinds of
roles in the process model, namely the tracer processes and key-value
store processes (i.e. k-v processes). Logically, data retrieval from tracer
processes follows the hierarchy from the local and parallel key-value
stores, and finally the file system.

same MPI communicator (MPI COMM WORLD). The second way is to
run the k-v processes as a service, where at the start of the analysis,
the parallel key-value store has already been populated and can lead
to even better analysis performance. This can be effectively imple-
mented through dynamic process management as provided by MPI-2
(MPI Publish name), provided that the job scheduler of the com-
puting facility supports that feature of MPI-2. The third is where an
analysis process manages tracer and k-v threads, as opposed to tracer
and k-v processes. To conservatively measure performance, our tests
in this paper are run in the first way.

3.2 Prefetching and Access Pattern Reusability

Prefetching is the key to hide the latency of data access. The parallel
key-value store not only loads and returns the requested data entries to
the tracers, but also prefetches the highly possible entries to retrieve
according to the access patterns.

Figure 3(a) illustrates the prefetching hint graph for a small dataset.
The data domain is uniformly partitioned into 8×8 blocklets, and each
of them is indexed by their X- and Y-coordinates marked on the bound-
aries. In the key-value store, the indices (X ,Y) are used as the keys,
and the blocklets data are stored as values. At the very beginning,
there is no edges (prefetching hints) in this graph. During the particle
tracing, the tracer issues a prefetching hint, if a particle passes from
one blocklet (X ,Y) to another (X ′,Y ′). Thus, a prefetching hint is de-

2557GUO ET AL.: ADVECTION-BASED SPARSE DATA MANAGEMENT FOR VISUALIZING UNSTEADY FLOW

querying the parallel key-value store, and keep the blocklets received
in a local LRU cache.

In the past, the field has made great progress on improving the speed
and scalability of unsteady flow visualization. For example, with I/O
potentially takes up 90% time in a typical visualization task [21], re-
searchers improved efficiency by using irregular data partition [12] and
by optimizing file layout according to flow features [10, 11]. Load-
balancing is difficult because optimal task distribution is hard to pre-
dict in unsteady flow visualization. Researchers improved scalability
by using a multi-tier task distribution scheme that minimized global
barriers and optimized the efficiency of task redistribution [22].

Recent implementations of large-scale unsteady flow analyses com-
monly employ static data distribution, and intermix data parallelism
with task parallelism. In part, the key consideration is that moving
large amounts of data on the fly is overwhelmingly expensive. This
trend is true both on large supercomputer tier platforms and also on
small to medium sized institutional HPC platforms. Regardless of sce-
nario, great efforts are needed to fine tune both the algorithms and the
configuration of the runs for best performance.

In contrast, our method uses static task distribution and employs
task parallelism, by accurately and efficiently discovering the work-
ing set and passing data from parallel key-value store to tracers on-
demand. Our implementation of parallel key-value store effectively
manages in-core data and reduces the latency of data access in gen-
eral. On top of that, our method constructs a graph based predictive
hint model to accurately prefetch data from high a performance sys-
tem (i.e. parallel file system or SSD enhanced file system) with built-in
flow control, thereby effectively hides latency due to on-demand disk
I/O.

In the remainder of the paper, we describe the background in Sec-
tion 2. The sparse data management and the implementation details
are described in Sections 3 and 4, respectively. We demonstrate the
application cases in Section 5, and then conclude in Section 6.

2 BACKGROUND

2.1 Advection-based Flow Visualization

Particle advection traces integral curves from user specified seed
points. It is widely used in flow visualization methods, such as texture-
based methods [23], geometry-based [25] methods, and flow feature
extraction and tracking [32]. We divide these advection-based meth-
ods into two categorizes, namely local-range and full-range analysis.

Local-range analysis seeds locally or sparsely in a given spatiotem-
poral domain. For example, source-destination analysis is a local-
range analysis useful for visualizing contaminant transport between
two regions. For another example, flow surfaces [14] are ideal to il-
lustrate unsteady flows as they directly show the behaviors of coherent
moving particles.

Full-range analysis densely seeds over the entire simulation do-
main. In texture-based flow visualization, such as Line Integral
Convolution (LIC) [7] and Unsteady Flow LIC (UFLIC) [34], inte-
gral curves are computed over all spatiotemporal samples in the do-
main. Densely seeded integral curves are also used for extracting La-
grangian Coherent Structures (LCS) with Finite-Time Lyapnov Expo-
nents (FTLE) [15], for identifying differences between ensemble flow
simulation results [17], and for selecting flow features according to
pathline attributes [16]. Full-range analysis is computationally expen-
sive, even with acceleration methods such as seeding with adaptive
refinement [2] and reusing the already calculated parts [19].

This work improves the performance, scalability as well as space
efficiency for both the local-range and the full-range analysis using
blocklet-based sparse data management.

2.2 Parallel Particle Tracing

In general, parallel particle tracing methods can be categorized as task-
parallelism, data-parallelism and hybrid methods that combine task-
and data-parallelism.

Data-parallel particle tracing relies on data partitioning and distri-
bution for load-balancing. For example, blocks can be statically as-
signed by round-robin [31], hierarchical clustered [37], partitioned ac-

cording to boundaries of flow features [12], or partitioned over time
steps to reduce memory cost in unsteady flow FTLE computation [28].
Task-parallel particle tracing revolves load-balancing by scheduling,
such as workload estimation [29], dynamic load balancing [33, 27],
etc. On-demand strategies are also used to reduce I/O costs and com-
munication [8]. More recently, hybrid methods are considered to be
more scalable. DStep [22] minimizes global barriers with a multi-tier
task distribution and static data distribution. More recently in [17],
Guo et al. demonstrated unprecedented ensemble flow analysis in La-
grangian scheme by extending DStep [22].

Common among parallel particle tracing methods, I/O is the typical
bottleneck for scalability and performance. A few approaches have
been proposed to improve data partitioning, including the block-based
methods [31, 29], fine-grained partitioning [37, 12]. Optimized flow
file layout can also be used to hide the latency of data retrieval [10, 11].

In this work, by transforming the in-core data management of parti-
cle advection to one using large-scale parallel key-value store, we have
been able to further reduce the granularity of data retrieval to blocklets,
and achieve better utilization of I/O and communication bandwidth.

2.3 Key-Value Store and Data Prefetching

Key-value store is a simple, general and powerful data model for data
retrieval. It is widely used in NoSQL databases for big data applica-
tions in industry settings. Key-value store techniques can be roughly
categorized into RAM cache vs. persistent store.

RAM cache key-value store could be as simple as a hash table, and
there are also a series of production systems such as Memcached1 and
Redis2. For real-time and high-throughput applications, distributed
key-value store is routinely used. Distributed hash table implemen-
tation in high-end HPC environments has been reported in the litera-
ture [24]. Persistent key-value store is used when data cannot fit into
the memory, or it is necessary to persistently store the data. Popular
solutions include BigTable[9], LevelDB3, and Cassandra4, etc.

A key efficiency technique among key-value store systems is Sorted
String Tables (SST), which is based on log-structured storage [30]. In
our work, we have implemented our own SST and extended it to work
with global and parallel file systems. In addition to the traditional key-
value store data models, we further developed a graph-based method to
capture advection-based predictions of on-demand data access needs.

Our work is related to data caching and prefetching techniques.
In parallel applications, I/O signatures are automatically traced and
used to guide prefetching in MPI-IO [6]. Pre-execution techniques are
also leveraged to hide parallel I/O latencies without perceivable pat-
terns [13]. In our work, the data access patterns which are based on
flow advection, are extracted and reused during the runtime. Although
prefetching is usually beneficial, over-prefetch that saturations the sys-
tem could impact performance. As demonstrated for remote visualiza-
tion in [35], our system also needs to adaptively optimize prefetching
parameters at runtime.

3 ADVECTION-BASED SPARSE DATA MANAGEMENT FOR PAR-
TICLE ADVECTION

Figure 1 illustrates the pipeline of our approach. The central part is
sparse data management, which provides high performance data re-
trieval for the particle tracers in visualization and analysis applica-
tions. Our pipeline is generally applicable to post-processing (e.g. the
input is files containing raw flow field data), and in-situ visualization
as well as co-processing, where the input to our pipeline is unsteady
flow data from live simulations. The data conversion process partitions
the raw data into blocklets, which are indexed by their spatiotemporal
locations. Tracer processes focus on advection computation, request
blocklets by spatiotemporal indices, but are otherwise not involved in
concurrently managing I/O, transfer and in-core storage aspects of the
unsteady flow data.

1http://memcached.org
2http://redis.io
3http://code.google.com/p/leveldb
4http://cassandra.apache.org

Sparse Data Management

Field Lines for

Visualization &

Analysis

(Parallel) Particle

Tracing

Data Conversion

Flow Simulation

Flow Data
U(t,z,y,x)

V(t,z,y,x)

W(t,z,y,x)

Sparse Data Management

Blocklets

Access Patterns

Parallel

K-V Store

Prefetching

Hint Graph

Prefetching

...

Fine-Grained

Partitioning

Fig. 1. The pipeline of the advection-based sparse data management. Raw data from storage or simulation is converted by fine-grained data
partitioning, and then handled by the sparse data management system. The system provides high performance data access with prefetching,
which brings both efficiency and scalability for field line tracing in various visualization tasks. The access patterns can be updated in runtime and
effectively reused in later runs.

There are two mechanisms to manage data flow in our system,
namely the parallel key-value store and the prefetching. The paral-
lel key-value store is efficient and scalable. Better performance could
be achieved by adding more computing resources, e.g. cores, mem-
ory, and I/O bandwidth, etc. The prefetching in our system uses a
graph based model to capture and represent access patterns. We refer
to this graph as prefetching hints. The prefetching hints are reusable
and constructed on-the-fly. When prefetching hints have been grad-
ually added as advection computation progresses, the reusability of
prefetching hints considerably expedites data access.

3.1 Data Flow and Process Models

As shown in Figure 2, data primarily flows from the parallel key-value
store to tracers. The required data entries (e.g. cells, blocklets) are
fetched from the parallel key-value store, which performs actual data
I/O from the file system. Tracers update the parallel key-value store by
defining new prefetching hints, so that the prefetch hints graph are con-
tinuously constructed and expanded. Each tracer also employs a sim-
plistic LRU-cache (implemented as a simple RAM key-value store)
for faster data access. In this regard, data access by a tracer is quite
similar to data access on a CPU with a multi-layer cache, where if
the required entries are not cached by the tracer, then it takes a longer
time to fetch from the parallel key-value store. If the parallel key-
value store does not have the data either, then the data will be fetched
from the file system and take an even longer period of time. Of course
the parallel key-value store leverages the hints graph to aggressively
prefetch to avoid cache-miss, while also implementing flow-control to
avoid congesting the I/O system.

Parallelism is achieved with distributed processes and message
passing. There are two types of processes: tracer processes and key-
value store processes (k-v processes). Tracer processes and k-v pro-
cesses use the same runtime API (Section 3.3) to request/retrieve and
send data entries.

For load-balance, k-v processes partition the key space by hash-
ing and round-robin assignment. A key k is assigned to a k-v process
according to: i = hash(k) mod n, where n is the number of k-v pro-
cesses. Data requests from tracers are directly sent to the correspond-
ing k-v processes, via point-to-point communication.

In addition to data requests, a tracer can also issue a prefetch hint
as a chain of predicted data requests, where each request is identified
by a hash key in the same way as in real data requests. Every prefetch
hint is first sent to the k-v process in charge of the first key in the chain.
That k-v process processes the first prefetch request, and then recur-
sively forwards the remaining part of the chain to the k-v processes in
charge of the first remaining prefetch request. This forwarding pro-
cess iterates until the chain has been exhausted. After a blocklet has
been prefetched, the k-v process keeps that data and also forwards that
blocklet to the original tracer process that has requested that entry.

This process model is flexible for different environments. There
are three scenarios. The first is to run tracer and k-v processes in the

I/O Requests

Non-blocking

Queries

Local K-V Store ~1μs

Parallel

K-V Store
~100μs(*)

File System 0.1-10ms(*)

(*) Varies from different hardware & software configurations

MPI-IO

S� S� S� S�

K-V Store Processes

(*) Varies from different hardware & softwa

T� T� T�

Tracer Processes

Fig. 2. The software architecture of the system. There are two kinds of
roles in the process model, namely the tracer processes and key-value
store processes (i.e. k-v processes). Logically, data retrieval from tracer
processes follows the hierarchy from the local and parallel key-value
stores, and finally the file system.

same MPI communicator (MPI COMM WORLD). The second way is to
run the k-v processes as a service, where at the start of the analysis,
the parallel key-value store has already been populated and can lead
to even better analysis performance. This can be effectively imple-
mented through dynamic process management as provided by MPI-2
(MPI Publish name), provided that the job scheduler of the com-
puting facility supports that feature of MPI-2. The third is where an
analysis process manages tracer and k-v threads, as opposed to tracer
and k-v processes. To conservatively measure performance, our tests
in this paper are run in the first way.

3.2 Prefetching and Access Pattern Reusability

Prefetching is the key to hide the latency of data access. The parallel
key-value store not only loads and returns the requested data entries to
the tracers, but also prefetches the highly possible entries to retrieve
according to the access patterns.

Figure 3(a) illustrates the prefetching hint graph for a small dataset.
The data domain is uniformly partitioned into 8×8 blocklets, and each
of them is indexed by their X- and Y-coordinates marked on the bound-
aries. In the key-value store, the indices (X ,Y) are used as the keys,
and the blocklets data are stored as values. At the very beginning,
there is no edges (prefetching hints) in this graph. During the particle
tracing, the tracer issues a prefetching hint, if a particle passes from
one blocklet (X ,Y) to another (X ′,Y ′). Thus, a prefetching hint is de-

2558 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

key=“cell_3”

value=“...”

pf_hints={Ø}

key=“cell_2”

value=”...”

pf_hints={

 “cell_4”

}

key=“cell_1”

value=“...”

pf_hints={

 “cell_2”,

 “cell_3”

}

...

get(key=“cell_1”,

 &value,

 pf_depth=1)
key=“cell_4”

value=“...”

pf_hints={

 ...

}

...

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(7, 4)
(6, 5)

(7, 5)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 4)

returned

prefetched

uncached

(a)

(b)

(5, 5)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(3, 4)

(1, 1)

Fig. 3. The data structures in the sparse data management: (a)
the prefetching hint graph of a small dataset; (b) key-value store with
prefetching hints. The prefeching hints are issued by the tracers, and
reused by the parallel key-value store.

fined as (X ,Y)→ (X ′,Y ′). As tracers run several times with some of
different problem sets, more and more prefetching hints will join the
graph. In a subsequent run, the prefetching hints will be reused. In
Figure 3(a) left, the tracers compute two pathlines, which are seeded
from the blocklets (1,1) and (3,4). The two blocks are requested by
the tracer processes and fetched by the k-v processes. The k-v pro-
cesses not only return the requested blocklets, but also prefetch the
corresponding blocklets according to the prefetching hints. For exam-
ple, when (1,1) is requested, (1,2), (1,3). . . are also prefetched and
sent to the tracers.

As shown in Figure 3(b), the access patterns are stored as prefetch-
ing hints in the data structure. Essentially, we extended the traditional
key-value store model by adding a pre-feching hints field. Each data
entry is stored as:

<key, value, pf hints[]>,

where pf hints[] are the keys of the data to prefetch. Essentially,
a directed graph was constructed by the data entries and prefetching
hints. Figure 3 illustrates an example of the prefetching hint graph and
the data structures.

It is noteworthy that the sparse data management itself does not
generate prefetching hints. Instead, the prefetching hints are issued by
the tracer processes, and reused by the k-v processes as exemplified
by the above example. By iteratively running tracers, more and more
prefetching hints will be added into the store, and then accelerate the
data access in further runs.

3.3 Runtime APIs

The runtime API of the sparse data management promotes a similar
design to state-of-the-art key-value store system for data retrieval. In
the tracers, the key is the spatiotemporal index of the cell/blocklet,

and the value stores the actual data. Users can get or modify the val-
ues (actual data) by get() or put() functions. In addition several
additional APIs are designed for tracers to define prefetching hints, as
the runtime itself does not analyze the access patterns of the flow data.
The tracers need to explicitly define the prefetching hints to acceler-
ate further analysis. During the data retrieval, the prefetching depths
could also be optionally assigned. The runtime will recursively load
the data in the memory for fast access. The most important runtime
APIs provided to the tracers are as follows:

get(key, &value, pf depth) If the entry key locally ex-
ists, return the corresponding data as value. pf depth is an
integer which limits the maximum depth of prefetching. The
runtime will prefetch the values corresponding to the keys in
pf hints by Breath-First Search (BFS) in a recursive manner.
Prefetching is not performed if the depth equals to zero.

put(key, value) This function is equivalent to put in other
key-value store systems. It sets the entry key to value. The
entry is removed if value is empty.

add hint(key, key’) Add a prefetching hint for the entry
associated with key. Essentially, it adds an edge key->key’
to the prefetching hint graph.

reset hints(key) Remove all prefetching hints of the entry
that corresponds to key.

3.4 Task-Parallel Particle Advection with Sparse Data
Management

Task-parallel particle advection is considered to be the most straight-
forward approach in visualizing large-scale unsteady flow, despite of
complex I/O and data management. However, it is very difficult to
scale due to the data access problems. Our method improves both I/O
bandwidth-efficiency and scalability by managing the complex data
store and access. It also simplifies the data management on the tracer
side, thus users do not need to manually manage the memory use and
synchronization. The only additional effort for users is to define the
prefetching hints when the particle travels from one cell/blocklet to an-
other, because the runtime cannot differentiate the traversal sequence
when the runtime is concurrently accessed.

Algorithm 1 Tracing the pathline from a given seed with the sparse
data management runtime.

function TRACE(seed, pathline)
pathline.add(seed) ⊲ Initialize the pathline
while pathline.trace size < max trace size do

point = rk4(pathline.last point)
pathline.add(point)
if not inside domain(point) then ⊲ Finish the pathline

break
else if not inside blocklet(current blocklet, point) then

next blocklet = point to blocklet(point)
if not get(next blocklet) then

Suspend and wait for next blocklet
end if
add hint(current blocklet, next blocklet) ⊲ Add a

prefetching hint
end if

end while
end function

The pseudo code of tracing the pathline from a given seed is shown
in Algorithm 1. Massive particles can be traced with more processors
in “share-nothing” and naive task-parallelism way. In our applications,
especially for local-range analysis, the sparse data management only
loads the data blocklets that are requested or potentially used for the
analysis, without accessing the whole data. The sparse data manage-
ment scheme not only simplifies the data access, but also enhances the
memory and I/O bandwidth efficiency of task-parallel particle tracing.

Prefetching Hint: ‘a’ -->’b’

(a) (b) (c)

T� T�

S� S�

GetReq
key=‘a’

depth=2

src=1

T� T�

S� S�

Entry
key=‘b’

value=‘…’

T� T�

S� S�

Entry
key=‘a’

value=‘…’

GetReq

key=‘b’

depth=1

src=1

Fig. 4. An example of inter-process communication: (a) data entry
‘a’ is requested by an tracer process; (b) the corresponding k-v process
returns entry ‘a’, and forward a request to prefetch ‘b’; (c) the prefetched
entry ‘b’ is also returned to the tracer process.

4 IMPLEMENTATION AND PERFORMANCE EVALUATION

4.1 Inter-Process Communication

We have developed our prototype system using C++ with hybrid
MPI/thread parallelism. All data communication are through message
passing. In typical scenarios, the communication pattern follows the
data access hierarchies shown in Figure 2. Based on the software ar-
chitecture, there are three types of inter-process communications in
our framework, namely tracer-to-store, store-to-tracer, and store-to-
store communications. Notice that there is no communication between
tracer processes. In general, the tracer processes send requests to the
corresponding k-v processes, and the data entries are then sent back
to the tracers. Data prefetching is done via store-to-store communica-
tions.

Through the runtime API, different types of messages are
sent and processed, including GetRequests (requesting
an entry), SetRequests (updating or inserting an entry),
HintRequests (modifying the prefetching hint of an entry),
FlushRequests (dumping all updated entries into the file system)
and ExitRequests (exiting after all requests are processed),
etc. There are other messages for delivering data entries, process
states and statistics. GetRequests are the most important requests
for internal data exchange among processes. Taking (pre)fetching
for example (Figure 4), GetRequests can be used for both data
requesting (tracer-to-store) and for forwarding prefetching requests
(store-to-store).

Asynchronous communication is leveraged to reduce the latencies.
All messages are queued, and then serialized and sent to the desti-
nation processes. After receiving, the messages are deserialized and
then processed. We use Google protobuf library 5 to handle message
serialization.

4.2 Local and Parallel Key-Value Store

Regardless of the roles of processes, each runtime instance keeps a
local key-value store, The local key-value store, which acts like cache
(e.g. Memcached), keeps the recently used data entries and greatly
improves the data locality. For tracer processes, during the particle
advection, the same entries are often accessed several times from the
local key-value store, without fetching from the k-v processes.

In the prototype system, in order to limit the memory footprint,
Least-Recently Used (LRU) policy is employed in the local key-value
store. The implementation is based on a linked list and hash table,
which keep the actual key-value pairs and the pointers to the linked
list nodes, respectively. During the data access, the addresses of the
entries are looked up in the hash table, and the orders of linked list are
updated. When the cache is reaching the capacity, the least recently
used entries in the tail of the linked list are removed. Thread-safety is
provided for concurrent data access. The performance of the key-value
store is comparable to decent production libraries. In our experiment,

5http://code.google.com/p/protobuf

the set and get throughput of the local key-value store can reach up to
1.4M and 2.6M entries per second, respectively.

The parallel key-value store is built upon the local store. Data is par-
titioned and distributed by keys to achieve data-parallelism. During the
lookup, the runtime first checks if the data entry is locally available,
other wise sends a GetRequest to the destination process according
to the data partitioning. Prefetching can further enhance the perfor-
mance of the parallel key-value store, if applicable. Depending on the
interconnection latency and runtime payload, the latency of getting an
entry from the parallel key-value store is 10 to 100 microseconds in
our experiments. The overall throughput is scalable if accessed con-
currently. The parallel data store also provides larger space for data
caching. For example, in a typical configuration with 16 k-v processes,
if the size limit of each local key-value store is 1GB, then the overall
size of the parallel store space will be 16GB.

4.3 Persistent Key-Value Store with Global SST

Our persistent key-value store is based on Sorted String Tables (SST),
which is a simple log-structured storage solution [30] widely used in
many popular production systems like BigTable [9]. In our prototype
system, we extend SST to Global SST, where data is stored in a high
performance file system, such as a parallel file system or one enhanced
by SSD. We omitted data replication features for better performance.

SST0

SSTn-1

MemTable

Reads Writes

Partition Filter

Bloom Filter

Statistic Filter

SST Indices

Table File

SSTn

... ...

Fig. 5. Reading and
writing data entries with
Global SSTs.

The flow chart of reading and writing
entries to SSTs is illustrated in Figure 5.
Generally speaking, an SST is as sim-
ple as a data file with an index file (SST
Index). The data file stores the actual
values, while the SST Index records the
key:offset pairs for fast access, where
offset is the position of the value in the
data file. The system may generate a se-
ries of SSTs during execution, and an SST
is immutable after it is generated. When a
key exists in multiple SSTs, the one in the
latest SST takes precedence.

To make SSTs into Global SSTs, we in-
troduce the partition filter for membership
test. In our method, it is imperative to be
able to change N, the number of k-v pro-
cesses that access the persistent key-value
store. Traditionally, SSTs may be written
with different data partitioning scheme de-
fined by number of k-v processes N and
the process id i. However, with such par-
titioning methods, given K entries and N
slots, it is very hard to change N due to
the expensive data redistribution. Consis-
tent hashing [20] is proposed to solve this
problem, yet data moving is still required.
As we need all SSTs to be globally accessible to all k-v processes, we
address this problem by adding a partition filter for SSTs. It checks
whether a queried key belongs to the key space partition of an SST.
The query could be accelerated by the membership test with partition-
ing schemes defined by N and i. For example, an SST was written by
the i-th k-v process (N processes in total), then partition filter checks
if hash(key) mod N equals to i.

Our global SST also uses other standard SST filters to accelerate
membership test. Statistic filter tests whether the queried key is within
the range of the key (the maximum and minimum keys in an SST).
Bloom filter [4] is used to check whether a key belongs to an SST in
constant time. Keys that have passed all of the filters will be actually
queried in the SST indices using binary search.

During initialization, the stored Global SST meta data are loaded
into memory across all k-v processes. SST indices are cached in mem-
ory, not all contents in an SST index need to be loaded.

Key-value pair query is straightforward. A k-v process first checks
whether a queried key is available in local cache. If not, it then check
whether the key passes the filter of SSTk, SSTk−1, . . . , SST1, where

2559GUO ET AL.: ADVECTION-BASED SPARSE DATA MANAGEMENT FOR VISUALIZING UNSTEADY FLOW

key=“cell_3”

value=“...”

pf_hints={Ø}

key=“cell_2”

value=”...”

pf_hints={

 “cell_4”

}

key=“cell_1”

value=“...”

pf_hints={

 “cell_2”,

 “cell_3”

}

...

get(key=“cell_1”,

 &value,

 pf_depth=1)
key=“cell_4”

value=“...”

pf_hints={

 ...

}

...

(3, 4)

(4, 4)

(5, 4)

(6, 4)

(7, 4)
(6, 5)

(7, 5)

(1, 1)

(1, 2)

(1, 3)

(1, 4)

(2, 4)

returned

prefetched

uncached

(a)

(b)

(5, 5)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

(3, 4)

(1, 1)

Fig. 3. The data structures in the sparse data management: (a)
the prefetching hint graph of a small dataset; (b) key-value store with
prefetching hints. The prefeching hints are issued by the tracers, and
reused by the parallel key-value store.

fined as (X ,Y)→ (X ′,Y ′). As tracers run several times with some of
different problem sets, more and more prefetching hints will join the
graph. In a subsequent run, the prefetching hints will be reused. In
Figure 3(a) left, the tracers compute two pathlines, which are seeded
from the blocklets (1,1) and (3,4). The two blocks are requested by
the tracer processes and fetched by the k-v processes. The k-v pro-
cesses not only return the requested blocklets, but also prefetch the
corresponding blocklets according to the prefetching hints. For exam-
ple, when (1,1) is requested, (1,2), (1,3). . . are also prefetched and
sent to the tracers.

As shown in Figure 3(b), the access patterns are stored as prefetch-
ing hints in the data structure. Essentially, we extended the traditional
key-value store model by adding a pre-feching hints field. Each data
entry is stored as:

<key, value, pf hints[]>,

where pf hints[] are the keys of the data to prefetch. Essentially,
a directed graph was constructed by the data entries and prefetching
hints. Figure 3 illustrates an example of the prefetching hint graph and
the data structures.

It is noteworthy that the sparse data management itself does not
generate prefetching hints. Instead, the prefetching hints are issued by
the tracer processes, and reused by the k-v processes as exemplified
by the above example. By iteratively running tracers, more and more
prefetching hints will be added into the store, and then accelerate the
data access in further runs.

3.3 Runtime APIs

The runtime API of the sparse data management promotes a similar
design to state-of-the-art key-value store system for data retrieval. In
the tracers, the key is the spatiotemporal index of the cell/blocklet,

and the value stores the actual data. Users can get or modify the val-
ues (actual data) by get() or put() functions. In addition several
additional APIs are designed for tracers to define prefetching hints, as
the runtime itself does not analyze the access patterns of the flow data.
The tracers need to explicitly define the prefetching hints to acceler-
ate further analysis. During the data retrieval, the prefetching depths
could also be optionally assigned. The runtime will recursively load
the data in the memory for fast access. The most important runtime
APIs provided to the tracers are as follows:

get(key, &value, pf depth) If the entry key locally ex-
ists, return the corresponding data as value. pf depth is an
integer which limits the maximum depth of prefetching. The
runtime will prefetch the values corresponding to the keys in
pf hints by Breath-First Search (BFS) in a recursive manner.
Prefetching is not performed if the depth equals to zero.

put(key, value) This function is equivalent to put in other
key-value store systems. It sets the entry key to value. The
entry is removed if value is empty.

add hint(key, key’) Add a prefetching hint for the entry
associated with key. Essentially, it adds an edge key->key’
to the prefetching hint graph.

reset hints(key) Remove all prefetching hints of the entry
that corresponds to key.

3.4 Task-Parallel Particle Advection with Sparse Data
Management

Task-parallel particle advection is considered to be the most straight-
forward approach in visualizing large-scale unsteady flow, despite of
complex I/O and data management. However, it is very difficult to
scale due to the data access problems. Our method improves both I/O
bandwidth-efficiency and scalability by managing the complex data
store and access. It also simplifies the data management on the tracer
side, thus users do not need to manually manage the memory use and
synchronization. The only additional effort for users is to define the
prefetching hints when the particle travels from one cell/blocklet to an-
other, because the runtime cannot differentiate the traversal sequence
when the runtime is concurrently accessed.

Algorithm 1 Tracing the pathline from a given seed with the sparse
data management runtime.

function TRACE(seed, pathline)
pathline.add(seed) ⊲ Initialize the pathline
while pathline.trace size < max trace size do

point = rk4(pathline.last point)
pathline.add(point)
if not inside domain(point) then ⊲ Finish the pathline

break
else if not inside blocklet(current blocklet, point) then

next blocklet = point to blocklet(point)
if not get(next blocklet) then

Suspend and wait for next blocklet
end if
add hint(current blocklet, next blocklet) ⊲ Add a

prefetching hint
end if

end while
end function

The pseudo code of tracing the pathline from a given seed is shown
in Algorithm 1. Massive particles can be traced with more processors
in “share-nothing” and naive task-parallelism way. In our applications,
especially for local-range analysis, the sparse data management only
loads the data blocklets that are requested or potentially used for the
analysis, without accessing the whole data. The sparse data manage-
ment scheme not only simplifies the data access, but also enhances the
memory and I/O bandwidth efficiency of task-parallel particle tracing.

Prefetching Hint: ‘a’ -->’b’

(a) (b) (c)

T� T�

S� S�

GetReq
key=‘a’

depth=2

src=1

T� T�

S� S�

Entry
key=‘b’

value=‘…’

T� T�

S� S�

Entry
key=‘a’

value=‘…’

GetReq

key=‘b’

depth=1

src=1

Fig. 4. An example of inter-process communication: (a) data entry
‘a’ is requested by an tracer process; (b) the corresponding k-v process
returns entry ‘a’, and forward a request to prefetch ‘b’; (c) the prefetched
entry ‘b’ is also returned to the tracer process.

4 IMPLEMENTATION AND PERFORMANCE EVALUATION

4.1 Inter-Process Communication

We have developed our prototype system using C++ with hybrid
MPI/thread parallelism. All data communication are through message
passing. In typical scenarios, the communication pattern follows the
data access hierarchies shown in Figure 2. Based on the software ar-
chitecture, there are three types of inter-process communications in
our framework, namely tracer-to-store, store-to-tracer, and store-to-
store communications. Notice that there is no communication between
tracer processes. In general, the tracer processes send requests to the
corresponding k-v processes, and the data entries are then sent back
to the tracers. Data prefetching is done via store-to-store communica-
tions.

Through the runtime API, different types of messages are
sent and processed, including GetRequests (requesting
an entry), SetRequests (updating or inserting an entry),
HintRequests (modifying the prefetching hint of an entry),
FlushRequests (dumping all updated entries into the file system)
and ExitRequests (exiting after all requests are processed),
etc. There are other messages for delivering data entries, process
states and statistics. GetRequests are the most important requests
for internal data exchange among processes. Taking (pre)fetching
for example (Figure 4), GetRequests can be used for both data
requesting (tracer-to-store) and for forwarding prefetching requests
(store-to-store).

Asynchronous communication is leveraged to reduce the latencies.
All messages are queued, and then serialized and sent to the desti-
nation processes. After receiving, the messages are deserialized and
then processed. We use Google protobuf library 5 to handle message
serialization.

4.2 Local and Parallel Key-Value Store

Regardless of the roles of processes, each runtime instance keeps a
local key-value store, The local key-value store, which acts like cache
(e.g. Memcached), keeps the recently used data entries and greatly
improves the data locality. For tracer processes, during the particle
advection, the same entries are often accessed several times from the
local key-value store, without fetching from the k-v processes.

In the prototype system, in order to limit the memory footprint,
Least-Recently Used (LRU) policy is employed in the local key-value
store. The implementation is based on a linked list and hash table,
which keep the actual key-value pairs and the pointers to the linked
list nodes, respectively. During the data access, the addresses of the
entries are looked up in the hash table, and the orders of linked list are
updated. When the cache is reaching the capacity, the least recently
used entries in the tail of the linked list are removed. Thread-safety is
provided for concurrent data access. The performance of the key-value
store is comparable to decent production libraries. In our experiment,

5http://code.google.com/p/protobuf

the set and get throughput of the local key-value store can reach up to
1.4M and 2.6M entries per second, respectively.

The parallel key-value store is built upon the local store. Data is par-
titioned and distributed by keys to achieve data-parallelism. During the
lookup, the runtime first checks if the data entry is locally available,
other wise sends a GetRequest to the destination process according
to the data partitioning. Prefetching can further enhance the perfor-
mance of the parallel key-value store, if applicable. Depending on the
interconnection latency and runtime payload, the latency of getting an
entry from the parallel key-value store is 10 to 100 microseconds in
our experiments. The overall throughput is scalable if accessed con-
currently. The parallel data store also provides larger space for data
caching. For example, in a typical configuration with 16 k-v processes,
if the size limit of each local key-value store is 1GB, then the overall
size of the parallel store space will be 16GB.

4.3 Persistent Key-Value Store with Global SST

Our persistent key-value store is based on Sorted String Tables (SST),
which is a simple log-structured storage solution [30] widely used in
many popular production systems like BigTable [9]. In our prototype
system, we extend SST to Global SST, where data is stored in a high
performance file system, such as a parallel file system or one enhanced
by SSD. We omitted data replication features for better performance.

SST0

SSTn-1

MemTable

Reads Writes

Partition Filter

Bloom Filter

Statistic Filter

SST Indices

Table File

SSTn

... ...

Fig. 5. Reading and
writing data entries with
Global SSTs.

The flow chart of reading and writing
entries to SSTs is illustrated in Figure 5.
Generally speaking, an SST is as sim-
ple as a data file with an index file (SST
Index). The data file stores the actual
values, while the SST Index records the
key:offset pairs for fast access, where
offset is the position of the value in the
data file. The system may generate a se-
ries of SSTs during execution, and an SST
is immutable after it is generated. When a
key exists in multiple SSTs, the one in the
latest SST takes precedence.

To make SSTs into Global SSTs, we in-
troduce the partition filter for membership
test. In our method, it is imperative to be
able to change N, the number of k-v pro-
cesses that access the persistent key-value
store. Traditionally, SSTs may be written
with different data partitioning scheme de-
fined by number of k-v processes N and
the process id i. However, with such par-
titioning methods, given K entries and N
slots, it is very hard to change N due to
the expensive data redistribution. Consis-
tent hashing [20] is proposed to solve this
problem, yet data moving is still required.
As we need all SSTs to be globally accessible to all k-v processes, we
address this problem by adding a partition filter for SSTs. It checks
whether a queried key belongs to the key space partition of an SST.
The query could be accelerated by the membership test with partition-
ing schemes defined by N and i. For example, an SST was written by
the i-th k-v process (N processes in total), then partition filter checks
if hash(key) mod N equals to i.

Our global SST also uses other standard SST filters to accelerate
membership test. Statistic filter tests whether the queried key is within
the range of the key (the maximum and minimum keys in an SST).
Bloom filter [4] is used to check whether a key belongs to an SST in
constant time. Keys that have passed all of the filters will be actually
queried in the SST indices using binary search.

During initialization, the stored Global SST meta data are loaded
into memory across all k-v processes. SST indices are cached in mem-
ory, not all contents in an SST index need to be loaded.

Key-value pair query is straightforward. A k-v process first checks
whether a queried key is available in local cache. If not, it then check
whether the key passes the filter of SSTk, SSTk−1, . . . , SST1, where

2560 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

SSTk and SST1 are the latest and earliest ones, respectively. If the key
does not pass the SST filters, then the k-v process returns the query
with a “not found”. If the key passes the SST filters, the k-v process
then checks whether the key is in the indices of the SSTs. Finally, the
k-v process reads the actual data (i.e. value) from file and return the
value. The actual read operation in prefetching works similarly.

For insertion into key-value store, the data record goes directly to
a standard MemTable (i.e. an in-core lookup table). We implemented
our MemTable as a red-black tree. When the size of MemTable ex-
ceeds the limit or receives a flush request, it will be dumped into
an SST and written to the file system asynchronously. We omitted
fault tolerance features (e.g. commit logs) that are important to other
applications for simplicity and for reducing system overheads. For
example, when the tracer abnormally exits, losing an newly inserted
prefetching hint does not affect the completeness of data for future
uses.

In our experiments, the peak query performance of our global SST
implementation can reach up to 900 key-value pair reads per second
on a 7200rpm hard drive, and about 9000 pair reads per second on a
Solid-State Drive (SSD) with SATA 3.0 connection.

5 APPLICATION CASES AND PERFORMANCE EVALUATION

We demonstrate three driven application cases in flow visualization
and analysis with our methods, including streak surface computation,
source-destination queries, and FTLE computation. The first two are
typical local-range analysis, as only a small portion of data needs
to be actually accessed. The third is usually full-range analysis, yet
sometimes be local if regions of interest and limited time scopes are
focused. We also have different environments for the performance
benchmark, ranging from single workstation to supercomputing envi-
ronments. The datasets and test platforms are enumerated in Table 1.

Case Application Dataset Size

I Streak Surface Computation Turbulence 0.82TB
II Source-Destination Analysis GEOS-5 1.34GB
III FTLE Computation Isabel 13.4GB

Table 1. The application cases and datasets.

The Beowulf cluster consists of eight computing nodes and one
I/O node. Each computing node is equipped with two quad-core
Intel Xeon E5520 CPUs, which work at 2.26GHz and with 48GB
RAM. The I/O node shares a Lustre parallel file system to comput-
ing nodes, which is composed by only one OST (Object Storage Tar-
get). The storage device is a RAID6 disk array which contains 16 2TB
HDDs. The interconnection between all nodes is InfiniBand QDR with
40Gbps theoretical bandwidth.

The single workstation platform has a quad-core Intel i5-4670 CPU,
which operates at 3.40GHz. The main memory in this workstation is
16GB. The workstation is also equipped with two different consum-
able storage devices, including a Seagate 1TB HDD and an Intel 320
Series 120GB SSD. The two hard drives are connected to the mother-
board with SATA 3 interface (6Gbps theoretical bandwidth). Random
I/O performances on the both devices are reported to be 75∼100 IOPs
and ∼20K IOPs, respectively.

We also use the x86-based supercomputer in National Supercom-
puting Center in Jinan for the tests. It consists of 700 computing nodes,
and each of them has two Intel Xeon E5675 processors (hexa-core,
3.06GHz) and 36GB main memory. Our allocation can use about 10%
of the resources. The interconnection is InfiniBand QDR with a theo-
retical bandwidth of 40Gbps. SunWay Global File System (SWGFS)
is provided for high performance parallel I/O.

5.1 Case I: Streak Surface Computation

Streak surfaces [14], which visualize unsteady flow by advecting con-
tinuously released particles from given seed curves, are capable of de-
pecting the flow field over the entire lifetime. A streak surface is a
mesh which consists of the locus of a set of particles that are advected

(a) (b)

Fig. 7. Streak surface visualization of a terabyte-scale turbulence sim-
ulation: (a) the traced particles for surface generation; (b) the streak
surface.

by a time-varying flow field. As the integration goes on, new par-
ticles seeded at different time steps are added into the surface. The
meshes are usually constructed and then refined to obtain better visual
effects [5, 26]. The main bottleneck in streak surface computation is
the massive particle tracing, whihc requires extensive access of the
whole dataset.

In the experiment, highly densely-seeded particles are generated
from the seed line. In current implementation, the surface genera-
tion is done during the post-processing by triangulation, instead of us-
ing commonly-used quadrangular techniques [26], as the particles are
dense enough to generate fine visualization results in this case. Further
implementation could be added to adptively refine the surface on-the-
fly. In the particle tracing stage, seeds are partitioned by round-robin
and traced in different tracer processes in parallel. With the sparse
data management scheme, the naive task-parallelism implementation
can still keep scalability. As streak surface computation only needs to
access a small portion of data, the on-demand and high performance
data access greatly reduces the I/O cost for the computation.

Figure 7 shows the visualization results of a large scale turbulence
simulation data with our method. A seed line is selected to show the
features in the unsteady flow. The dataset is defined on a curvilinear
grid, with the spatial resolution of 1024× 1024× 720. In our exper-
iments, we use 100 time steps for streak surface generation. As 3
velocity components are used, the effective data size is 0.82TB. The
dataset is further partitioned and stored in the sparse data management
system, and each blocklet contains 8× 8× 8× 1 cells (9× 9× 9× 2
grid size). The overall key-value store size is about 2.2TB.

The benchmark results with different memory limits and number
of processes are shown in Figure. 6. The most noteworthy point in
this result is the data handling of TB-scale data with limited hardware
resources. First, the sparse data management is extremely memory-
efficient. For 64 processes, the total amount of the distributed memory
cannot fit a terabyte, but the system is even workable with very small
memory limit. In this memory-bounded case, it shows super-linear
acceleration as the number of processes increases. Second, the sys-
tem is I/O bandwidth efficient. On average, only 10GB out of 2.2TB
data is accessed to compute a streak surface. With traditional methods
which require in-core flow data management, given a decent fusion
parallel I/O bandwidth (say 10GB/s), merely I/O time will take about
100 seconds ideally. Yet it is not possible to keep the TB-scale data
in memory on relatively a small number of computing nodes. In our
results, it only takes 92 seconds to finish the computation on 8 com-
puting nodes (including the data access time), while keeping very low
memory footprint.

Although the data scale of the key-value store is usually larger than
traditional data formats, our method enables large-scale visualization
and analysis with resource-bounded computing facilities. The main
trade-off is between the storage space and the resources (memory foot-
print, I/O bandwidth, etc.), i.e. larger storage space for lower memory
footprint, larger storage space for lower I/O access.

5.2 Case II: Source-Destination Queries

Source-destination queries are important to investigate teleconnec-
tion relationships of arbitrary two regions in the flow field. In real

(a) (b) (c)

6432168

1000

100

10
6432168

10000

1000

100

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(M
B

)

10000

Total Time Read Bandwidth Total Bytes Communicated

Memory Limit = 96MB

Memory Limit = 48MB

Optimal Scaling

Memory Limit = 384MB

894.1
691.7

522.0

92.0

Processes ProcessesProcesses
6432168

10

1

0.1

Memory Limit = 96MB

Memory Limit = 48MB

Memory Limit = 384MB

Memory Limit = 96MB

Memory Limit = 48MB

Memory Limit = 384MB

100

Fig. 6. The performance of the streak surface computation of the terabyte-scale turbulence simulation with different number of processes and
configurations. The number of tracer processes and k-v processes are 1:1. Read bandwidth is the amount of bytes read divided by total running
time, and total bytes communicated is the summation of sent messages sizes from all processes. Super-linear acceleration is observed when the
memory limit is small. As the number of processes increases, the timings, under different memory limit, converge because the total amount of
distributed memory is enough to fit the requested data.

Total Time (SSD)

Prefetching Depth

109876543210

12

9

6

3

0

T
im

e
 (

se
co

n
d

s)

Total Time (HDD)

Prefetching Depth

109876543210

250

200

150

100

50

0

T
im

e
 (

se
co

n
d

s)

Total Bytes Read

Blocklet Size

⑤④③②①

M
B

15 300
① 1×1

2×2②
4×4

8×8

16×16

(b) (c)(a)

③
④
⑤

25

20

15

30

P
e

rc
e

n
ta

g
e

 (
%

)

Optimal Prefetching Depth Optimal Prefetching Depth400

350

300

250

28.1%

18.7%

15.6% 15.5%
16.7%

Fig. 9. Data access amount and performance on single workstation with different partitioning granularities (GEOS-5 dataset): (a) the data access
amount with different blocklet size; (b) the performance on SSD hard disk; (c) the performance on HDD hard disk. Optimal prefetching depths are
highlighted in (b) and (c).

Total Time

Processes
6432168

10

Read Bandwidth

Processes
6432168

10 1

Total Bytes Communicated

Processes
6432168

100

10

1

100 100 10

Total Time without Prefetching

Total Time with Prefetching

Optimal Scaling

Bandwidth

Total Bytes Read

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(G
B

)

To
ta

l B
yt

e
s

 R
e

a
d

 (
G

B
)

(a) (b) (c)

62.8

57.2
32.3

31.4

Fig. 10. The performance of the source-destination queries of the GEOS-5 dataset with different number of processes and configurations. The
number of tracer processes and k-v processes are 1:1. Read bandwidth is the amount of bytes read divided by total running time, and total bytes
communicated is the summation of sent messages sizes from all processes.

applications, end users can make hypotheses on source-destinations
by defining regions, and validate them by visualizing the field lines
between the two regions. For example, the CO2 exchange from
Northern and Southern Hemispheres, pollution dispersion between the
source to sensitive regions, etc. The queries are completed by tracing
dense seeded pathlines from the source region. In our experiment,
both memory- and I/O-bandwidth efficiency can be achieved with on-
demand data access and fine-grained data partitioning.

In this case, we use simulation result from GEOS-5 global climate
model which is developed by NASA Goddard Space Flight Center.
The spatial resolution of this model is 1◦ × 1.25◦, with 72 vertical
pressure levels. The dataset consists 24 monthly averaged results of
the simulation. The output of this model is stored in hybrid-sigma grid,

which requires a customized interpolation scheme for particle tracing
with Runge-Kutta 4th order numerical integral method. 4 out of 32
variables are used for the analysis, which are necessary for calculating
the three components of the wind speed vector.

In the conversion stage, the raw data is partitioned into small
blocklets of cells. In the optimal experiment, each blocklet contains
8× 8× 71× 1 cells (9× 9× 72× 1 grids). Instead of using individ-
ual cells, we have to keep a whole vertical column of data, in order to
precisely interpolate the attribute values in the hybrid-sigma grid.

We select two regions to see how massless particles trace with the
wind field from North America to East Asia within a month. 200 path-
lines are uniformly seeded every month (wall clock) from the source
region, and then advected in the entire domain. In Figure 8, there

2561GUO ET AL.: ADVECTION-BASED SPARSE DATA MANAGEMENT FOR VISUALIZING UNSTEADY FLOW

SSTk and SST1 are the latest and earliest ones, respectively. If the key
does not pass the SST filters, then the k-v process returns the query
with a “not found”. If the key passes the SST filters, the k-v process
then checks whether the key is in the indices of the SSTs. Finally, the
k-v process reads the actual data (i.e. value) from file and return the
value. The actual read operation in prefetching works similarly.

For insertion into key-value store, the data record goes directly to
a standard MemTable (i.e. an in-core lookup table). We implemented
our MemTable as a red-black tree. When the size of MemTable ex-
ceeds the limit or receives a flush request, it will be dumped into
an SST and written to the file system asynchronously. We omitted
fault tolerance features (e.g. commit logs) that are important to other
applications for simplicity and for reducing system overheads. For
example, when the tracer abnormally exits, losing an newly inserted
prefetching hint does not affect the completeness of data for future
uses.

In our experiments, the peak query performance of our global SST
implementation can reach up to 900 key-value pair reads per second
on a 7200rpm hard drive, and about 9000 pair reads per second on a
Solid-State Drive (SSD) with SATA 3.0 connection.

5 APPLICATION CASES AND PERFORMANCE EVALUATION

We demonstrate three driven application cases in flow visualization
and analysis with our methods, including streak surface computation,
source-destination queries, and FTLE computation. The first two are
typical local-range analysis, as only a small portion of data needs
to be actually accessed. The third is usually full-range analysis, yet
sometimes be local if regions of interest and limited time scopes are
focused. We also have different environments for the performance
benchmark, ranging from single workstation to supercomputing envi-
ronments. The datasets and test platforms are enumerated in Table 1.

Case Application Dataset Size

I Streak Surface Computation Turbulence 0.82TB
II Source-Destination Analysis GEOS-5 1.34GB
III FTLE Computation Isabel 13.4GB

Table 1. The application cases and datasets.

The Beowulf cluster consists of eight computing nodes and one
I/O node. Each computing node is equipped with two quad-core
Intel Xeon E5520 CPUs, which work at 2.26GHz and with 48GB
RAM. The I/O node shares a Lustre parallel file system to comput-
ing nodes, which is composed by only one OST (Object Storage Tar-
get). The storage device is a RAID6 disk array which contains 16 2TB
HDDs. The interconnection between all nodes is InfiniBand QDR with
40Gbps theoretical bandwidth.

The single workstation platform has a quad-core Intel i5-4670 CPU,
which operates at 3.40GHz. The main memory in this workstation is
16GB. The workstation is also equipped with two different consum-
able storage devices, including a Seagate 1TB HDD and an Intel 320
Series 120GB SSD. The two hard drives are connected to the mother-
board with SATA 3 interface (6Gbps theoretical bandwidth). Random
I/O performances on the both devices are reported to be 75∼100 IOPs
and ∼20K IOPs, respectively.

We also use the x86-based supercomputer in National Supercom-
puting Center in Jinan for the tests. It consists of 700 computing nodes,
and each of them has two Intel Xeon E5675 processors (hexa-core,
3.06GHz) and 36GB main memory. Our allocation can use about 10%
of the resources. The interconnection is InfiniBand QDR with a theo-
retical bandwidth of 40Gbps. SunWay Global File System (SWGFS)
is provided for high performance parallel I/O.

5.1 Case I: Streak Surface Computation

Streak surfaces [14], which visualize unsteady flow by advecting con-
tinuously released particles from given seed curves, are capable of de-
pecting the flow field over the entire lifetime. A streak surface is a
mesh which consists of the locus of a set of particles that are advected

(a) (b)

Fig. 7. Streak surface visualization of a terabyte-scale turbulence sim-
ulation: (a) the traced particles for surface generation; (b) the streak
surface.

by a time-varying flow field. As the integration goes on, new par-
ticles seeded at different time steps are added into the surface. The
meshes are usually constructed and then refined to obtain better visual
effects [5, 26]. The main bottleneck in streak surface computation is
the massive particle tracing, whihc requires extensive access of the
whole dataset.

In the experiment, highly densely-seeded particles are generated
from the seed line. In current implementation, the surface genera-
tion is done during the post-processing by triangulation, instead of us-
ing commonly-used quadrangular techniques [26], as the particles are
dense enough to generate fine visualization results in this case. Further
implementation could be added to adptively refine the surface on-the-
fly. In the particle tracing stage, seeds are partitioned by round-robin
and traced in different tracer processes in parallel. With the sparse
data management scheme, the naive task-parallelism implementation
can still keep scalability. As streak surface computation only needs to
access a small portion of data, the on-demand and high performance
data access greatly reduces the I/O cost for the computation.

Figure 7 shows the visualization results of a large scale turbulence
simulation data with our method. A seed line is selected to show the
features in the unsteady flow. The dataset is defined on a curvilinear
grid, with the spatial resolution of 1024× 1024× 720. In our exper-
iments, we use 100 time steps for streak surface generation. As 3
velocity components are used, the effective data size is 0.82TB. The
dataset is further partitioned and stored in the sparse data management
system, and each blocklet contains 8× 8× 8× 1 cells (9× 9× 9× 2
grid size). The overall key-value store size is about 2.2TB.

The benchmark results with different memory limits and number
of processes are shown in Figure. 6. The most noteworthy point in
this result is the data handling of TB-scale data with limited hardware
resources. First, the sparse data management is extremely memory-
efficient. For 64 processes, the total amount of the distributed memory
cannot fit a terabyte, but the system is even workable with very small
memory limit. In this memory-bounded case, it shows super-linear
acceleration as the number of processes increases. Second, the sys-
tem is I/O bandwidth efficient. On average, only 10GB out of 2.2TB
data is accessed to compute a streak surface. With traditional methods
which require in-core flow data management, given a decent fusion
parallel I/O bandwidth (say 10GB/s), merely I/O time will take about
100 seconds ideally. Yet it is not possible to keep the TB-scale data
in memory on relatively a small number of computing nodes. In our
results, it only takes 92 seconds to finish the computation on 8 com-
puting nodes (including the data access time), while keeping very low
memory footprint.

Although the data scale of the key-value store is usually larger than
traditional data formats, our method enables large-scale visualization
and analysis with resource-bounded computing facilities. The main
trade-off is between the storage space and the resources (memory foot-
print, I/O bandwidth, etc.), i.e. larger storage space for lower memory
footprint, larger storage space for lower I/O access.

5.2 Case II: Source-Destination Queries

Source-destination queries are important to investigate teleconnec-
tion relationships of arbitrary two regions in the flow field. In real

(a) (b) (c)

6432168

1000

100

10
6432168

10000

1000

100

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(M
B

)

10000

Total Time Read Bandwidth Total Bytes Communicated

Memory Limit = 96MB

Memory Limit = 48MB

Optimal Scaling

Memory Limit = 384MB

894.1
691.7

522.0

92.0

Processes ProcessesProcesses
6432168

10

1

0.1

Memory Limit = 96MB

Memory Limit = 48MB

Memory Limit = 384MB

Memory Limit = 96MB

Memory Limit = 48MB

Memory Limit = 384MB

100

Fig. 6. The performance of the streak surface computation of the terabyte-scale turbulence simulation with different number of processes and
configurations. The number of tracer processes and k-v processes are 1:1. Read bandwidth is the amount of bytes read divided by total running
time, and total bytes communicated is the summation of sent messages sizes from all processes. Super-linear acceleration is observed when the
memory limit is small. As the number of processes increases, the timings, under different memory limit, converge because the total amount of
distributed memory is enough to fit the requested data.

Total Time (SSD)

Prefetching Depth

109876543210

12

9

6

3

0

T
im

e
 (

se
co

n
d

s)

Total Time (HDD)

Prefetching Depth

109876543210

250

200

150

100

50

0

T
im

e
 (

se
co

n
d

s)

Total Bytes Read

Blocklet Size

⑤④③②①

M
B

15 300
① 1×1

2×2②
4×4

8×8

16×16

(b) (c)(a)

③
④
⑤

25

20

15

30

P
e

rc
e

n
ta

g
e

 (
%

)

Optimal Prefetching Depth Optimal Prefetching Depth400

350

300

250

28.1%

18.7%

15.6% 15.5%
16.7%

Fig. 9. Data access amount and performance on single workstation with different partitioning granularities (GEOS-5 dataset): (a) the data access
amount with different blocklet size; (b) the performance on SSD hard disk; (c) the performance on HDD hard disk. Optimal prefetching depths are
highlighted in (b) and (c).

Total Time

Processes
6432168

10

Read Bandwidth

Processes
6432168

10 1

Total Bytes Communicated

Processes
6432168

100

10

1

100 100 10

Total Time without Prefetching

Total Time with Prefetching

Optimal Scaling

Bandwidth

Total Bytes Read

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(G
B

)

To
ta

l B
yt

e
s

 R
e

a
d

 (
G

B
)

(a) (b) (c)

62.8

57.2
32.3

31.4

Fig. 10. The performance of the source-destination queries of the GEOS-5 dataset with different number of processes and configurations. The
number of tracer processes and k-v processes are 1:1. Read bandwidth is the amount of bytes read divided by total running time, and total bytes
communicated is the summation of sent messages sizes from all processes.

applications, end users can make hypotheses on source-destinations
by defining regions, and validate them by visualizing the field lines
between the two regions. For example, the CO2 exchange from
Northern and Southern Hemispheres, pollution dispersion between the
source to sensitive regions, etc. The queries are completed by tracing
dense seeded pathlines from the source region. In our experiment,
both memory- and I/O-bandwidth efficiency can be achieved with on-
demand data access and fine-grained data partitioning.

In this case, we use simulation result from GEOS-5 global climate
model which is developed by NASA Goddard Space Flight Center.
The spatial resolution of this model is 1◦ × 1.25◦, with 72 vertical
pressure levels. The dataset consists 24 monthly averaged results of
the simulation. The output of this model is stored in hybrid-sigma grid,

which requires a customized interpolation scheme for particle tracing
with Runge-Kutta 4th order numerical integral method. 4 out of 32
variables are used for the analysis, which are necessary for calculating
the three components of the wind speed vector.

In the conversion stage, the raw data is partitioned into small
blocklets of cells. In the optimal experiment, each blocklet contains
8× 8× 71× 1 cells (9× 9× 72× 1 grids). Instead of using individ-
ual cells, we have to keep a whole vertical column of data, in order to
precisely interpolate the attribute values in the hybrid-sigma grid.

We select two regions to see how massless particles trace with the
wind field from North America to East Asia within a month. 200 path-
lines are uniformly seeded every month (wall clock) from the source
region, and then advected in the entire domain. In Figure 8, there

2562 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

September, 2012

September, 2011

Fig. 8. Source-destination query on GEOS-5 dataset. Every month
there are 200 pathlines initially seeded in red and gradually changed to
be green as they advect in the domain. Results that meet the query
from North America to East Asia within two months are visualized, re-
spectively.

are 309 pathlines in total that meet the source-destination query in
September 2011 and September 2012.

We test the performance on GEOS-5 dataset on a single workstation
to see the I/O bandwidth efficiency of our method (Figure 9). Three
tracer processes and one k-v process run on the quad-core CPU. For
each test run, we dump Linux page caches to obtain fair timings. The
sparse data management greatly decreases the amount of the data ac-
cess. With the optimal configuration, only 2.77% blocklets are actually
accessed for this specific query. Although the size of key-value store
is usually larger than the raw data, our method can still save 84.5%
amount of bytes to read from the file system. In the results, SSD usu-
ally outperforms HDD, because the key-value store implementation
heavily relies on random I/O operations. Prefetching also brings ben-
efits. We ran different queries multiple times, thus the access patterns
are written and effectively reused in each run. With prefetching, the
overall computation time is decreased by 18.75%. In addition, we
have also tested the performance on the Beowulf cluster (Figure 10).
Prefetching also improves the scalability in parallel environments.

5.3 Case III: FTLE Computation

FTLE is widely used to measure the separation and to extract La-
grangian Coherent Structures (LCS) in flow field. The FTLE value
at a certain point indicates the possibility to diverge from particles
around this point within a finite time scope T . However, FTLE com-
putation is expensive due to the massive particle tracing from dense
sample points.

In this case, we demonstrate scalable FTLE computation with task-
parallel particle tracing based on the sparse data management. Previ-
ously, both sample reduction [2] and massively data-parallelism [28]
techniques are presented to accelerate the FTLE computation. Al-
though task-parallel particle tracing (partitioning over seeds) is the
most straightforward way to achieve parallelism in a “share-nothing”
manner, the efficiency and scalability are limited. By improving the
memory and I/O bandwidth-efficiency with the sparse data manage-
ment, we are capable of observing good scalability of this method.

We trace the uniformly-seeded pathlines and compute the FTLE

(a) (b)

Fig. 11. FTLE field of Isabel dataset at (a) time step 0 and (b) time step
20.

field of the Hurricane Isabel dataset, which is from an atmospheric
simulation. The spatial resolution of the data grid is 500×500×100.
48 hourly averaged data is stored in separated files. Figure 11 are the
visualization results of the FTLE field. We choose the optimal blocklet
size 4× 4× 4× 1 for data conversion. Pathline seeds are uniformly
placed in the data domain.

The scalability is studied on the supercomputing environment.
The performance with different number of processes are shown in
Figure 12. Without complicated task distribution strategies, our
method still shows good scalability as number of processes increases.
Prefetching greatly improves both performance and scalability in this
case. With all number of processes, the run with prefetching outper-
forms the run with no prefetching. On 256 processes, the run with no
fetching does not accelerate anymore, but the timings with prefetching
are keeping descending as the number of processes increases.

FTLE is usually regarded as full-range analysis, as users often tend
to visualize the global distributions. Similar to FTLE, the dense-
seeded pathline computation can also be extended to other analysis,
including ensemble flow simulation [17] and pathline attributes [16].
Yet, such tools are also used locally when a region of interest is fo-
cused, or a limited time scope is chosen. Benefits in local-range anal-
ysis with our method are still effective when the particles are traced in
a local region.

5.4 Observations and Discussion

All cases demonstrated in this section are from typical applications
from flow visualization and analysis. The advection-based sparse
data management greatly benefits the data access in various platforms,
ranging from single workstation to supercomputing environments. In
summary, the key observations in the three cases are as follows:

• Case I: Our method is memory-efficient, and it enables scalable
visualization of large-scale unsteady flow (e.g. terabyte scale tur-
bulence flow) while requiring a very limited amount of hardware
resources.

• Case II: Our method is I/O bandwidth efficient. It greatly re-
duces the amount of I/O with fine-grained and on-demand data
access.

• Case III: Our method greatly improves both performance and
scalability of the naive task-parallel particle tracing.

There are primarily two parameters for performance tuning, includ-
ing the prefetching depth and the blocklet size. Both of them are usu-
ally empirically determined. As studied by Sisneros et al. [35], in
multi-leveled cache architecture, there is no theoretical ways to choose
optimal prefetching parameters. For example, in processor caching,
the prefetching policies and word sizes are often determined by ex-
periments. In flow visualization and analysis, as the data features ac-
cess patterns are even more complex, it requires even more efforts to
achieve optimal performance. The prefetching depth cannot be too
large, because over-prefetching may saturate the bandwidth[35]. In

512256128643216

100

10

1
512256128643216

100

10

1

10

1
512256128643216

100

10

1

Total Time without Prefetching

Total Time with Prefetching

Optimal Scaling

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(G
B

)

To
ta

l B
yt

e
s

 R
e

a
d

 (
G

B
)

Total Time

Processes

Read Bandwidth

Processes

Total Bytes Communicated

Processes

(d) (e) (f)

1000 1000 100

Bandwidth

Total Bytes Read

114.1

19.4

185.5

42.2

Total Time

Processes

Read Bandwidth

Processes

Total Bytes Communicated

Processes

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(G
B

)

To
ta

l B
yt

e
s

 R
e

a
d

 (
G

B
)

(a) (b) (c)

6432168
10

Total Time without Prefetching

Total Time with Prefetching

Optimal Scaling

100

6432168

100

10
6432168

100

10

1

10

1

Bandwidth

Total Bytes Read

1001000
85.1

80.9

26.0

24.3

Fig. 12. The performance of the FTLE computation of the Isabel dataset with different number of processes and configurations. (a), (b) and (c)
are tested on the Beowulf cluster, while (d), (e) and (f) are tested on the supercomputer. The number of tracer processes and k-v processes are
1:1. Performance with and without prefetching is shown in (a) and (d). (b) and (e), (c) and (f) display the read bandwidth (with total bytes read) and
total bytes communicated with prefetching, respectively. Both performance and scalability are improved in the task-parallel particle tracing using
prefetching.

general, it is usually more memory-efficient to use smaller blocklet
size. However, due to the additional ghost grids storage in blocklets, it
may require additional data access if the blocklets are too small. Ad-
ditional space and time costs are also incurred by the key-value store.

6 CONCLUSIONS

In this work, we have explored a novel advection-based sparse data
management scheme for visualizing large unsteady flow data. We have
made extensive use of key-value store to manage blocklets in memory,
and used hint graphs for predictively guide data I/O. When visualizing
terabyte-scale unsteady flow data, our approach achieved significantly
better space efficiency in memory, as well as high performance and
scalability. Our results demonstrate that such sparse data management
greatly increases the scale of local-range analyses that are feasible for
resource-constrained systems, while it also improves the scalability of
full-range task-parallel particle tracing.

For future work, we want to extend our method for use by in-situ vi-
sualization. Our data management can be extended to handle irregular
and unstructured grid data. We would like to also improve the fine-
grained data partitioning by considering adaptive mesh refinement.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Qingdong Cai for providing the
TB-scale turbulence simulation data. This work is supported by NSFC
No. 61170204. This work is also partially supported by NSFC Key
Project No. 61232012 and the “Strategic Priority Research Program -
Climate Change: Carbon Budget and Relevant Issues” of the Chinese
Academy of Sciences Grant No. XDA05040205.

REFERENCES

[1] O. O. Akande and P. J. Rhodes. Iteration aware prefetching for unstruc-

tured grids. In Proceedings of the 2013 IEEE International Conference

on Big Data, pages 219–227, 2013.

[2] S. S. Barakat and X. Tricoche. Adaptive refinement of the flow map using

sparse samples. IEEE Trans. Vis. Comput. Graph., 19(12):2753–2762,

2013.

[3] E. Bethel, J. van Rosendale, D. Southard, K. Gaither, H. Childs, E. Brug-

ger, and S. Ahern. Visualization at supercomputing centers: The tale of

little big iron and the three skinny guys. IEEE Comput. Graph. Appl.,

31(1):90–95, 2011.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[5] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. Interactive streak

surface visualization on the GPU. IEEE Trans. Vis. Comput. Graph.,

15(6):1259–1266, 2009.

[6] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. Parallel I/O

prefetching using MPI file caching and I/O signatures. In SC08: Pro-

ceedings of the ACM/IEEE Conference on Supercomputing, pages 44:1–

44:12, 2008.

[7] B. Cabral and L. C. Leedom. Imaging vector fields using line integral

convolution. In Proceedings of SIGGRAPH 1993, pages 263–270, 1993.

[8] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy. Streamline in-

tegration using MPI-hybrid parallelism on a large multicore architecture.

IEEE Trans. Vis. Comput. Graph., 17(11):1702–1713, 2011.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. Gruber. BigTable: A distributed stor-

age system for structured data. In OSDI’06: Proceedings of Symposium

on Operating Systems Design and Implementation, pages 205–218, 2006.

[10] C.-M. Chen, B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Flow-guided

file layout for out-of-core pathline computation. In Proceedings IEEE

Symposium on Large Data Analysis and Visualization 2012, pages 109–

112, 2012.

[11] C.-M. Chen, L. Xu, T.-Y. Lee, and H.-W. Shen. A flow-guided file layout

for out-of-core streamline computation. In Proceedings of IEEE Pacific

Visualization Symposium 2012, pages 145–152, 2012.

[12] L. Chen and I. Fujishiro. Optimizing parallel performance of streamline

visualization for large distributed flow datasets. In Proceedings of Pacific

Visualization Symposium 2008, pages 87–94, 2008.

[13] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp. Hiding I/O la-

tency with pre-execution prefetching for parallel applications. In SC08:

Proceedings of the ACM/IEEE Conference on Supercomputing, pages

40:1–40:10, 2008.

[14] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and C. Ware.

2563GUO ET AL.: ADVECTION-BASED SPARSE DATA MANAGEMENT FOR VISUALIZING UNSTEADY FLOW

September, 2012

September, 2011

Fig. 8. Source-destination query on GEOS-5 dataset. Every month
there are 200 pathlines initially seeded in red and gradually changed to
be green as they advect in the domain. Results that meet the query
from North America to East Asia within two months are visualized, re-
spectively.

are 309 pathlines in total that meet the source-destination query in
September 2011 and September 2012.

We test the performance on GEOS-5 dataset on a single workstation
to see the I/O bandwidth efficiency of our method (Figure 9). Three
tracer processes and one k-v process run on the quad-core CPU. For
each test run, we dump Linux page caches to obtain fair timings. The
sparse data management greatly decreases the amount of the data ac-
cess. With the optimal configuration, only 2.77% blocklets are actually
accessed for this specific query. Although the size of key-value store
is usually larger than the raw data, our method can still save 84.5%
amount of bytes to read from the file system. In the results, SSD usu-
ally outperforms HDD, because the key-value store implementation
heavily relies on random I/O operations. Prefetching also brings ben-
efits. We ran different queries multiple times, thus the access patterns
are written and effectively reused in each run. With prefetching, the
overall computation time is decreased by 18.75%. In addition, we
have also tested the performance on the Beowulf cluster (Figure 10).
Prefetching also improves the scalability in parallel environments.

5.3 Case III: FTLE Computation

FTLE is widely used to measure the separation and to extract La-
grangian Coherent Structures (LCS) in flow field. The FTLE value
at a certain point indicates the possibility to diverge from particles
around this point within a finite time scope T . However, FTLE com-
putation is expensive due to the massive particle tracing from dense
sample points.

In this case, we demonstrate scalable FTLE computation with task-
parallel particle tracing based on the sparse data management. Previ-
ously, both sample reduction [2] and massively data-parallelism [28]
techniques are presented to accelerate the FTLE computation. Al-
though task-parallel particle tracing (partitioning over seeds) is the
most straightforward way to achieve parallelism in a “share-nothing”
manner, the efficiency and scalability are limited. By improving the
memory and I/O bandwidth-efficiency with the sparse data manage-
ment, we are capable of observing good scalability of this method.

We trace the uniformly-seeded pathlines and compute the FTLE

(a) (b)

Fig. 11. FTLE field of Isabel dataset at (a) time step 0 and (b) time step
20.

field of the Hurricane Isabel dataset, which is from an atmospheric
simulation. The spatial resolution of the data grid is 500×500×100.
48 hourly averaged data is stored in separated files. Figure 11 are the
visualization results of the FTLE field. We choose the optimal blocklet
size 4× 4× 4× 1 for data conversion. Pathline seeds are uniformly
placed in the data domain.

The scalability is studied on the supercomputing environment.
The performance with different number of processes are shown in
Figure 12. Without complicated task distribution strategies, our
method still shows good scalability as number of processes increases.
Prefetching greatly improves both performance and scalability in this
case. With all number of processes, the run with prefetching outper-
forms the run with no prefetching. On 256 processes, the run with no
fetching does not accelerate anymore, but the timings with prefetching
are keeping descending as the number of processes increases.

FTLE is usually regarded as full-range analysis, as users often tend
to visualize the global distributions. Similar to FTLE, the dense-
seeded pathline computation can also be extended to other analysis,
including ensemble flow simulation [17] and pathline attributes [16].
Yet, such tools are also used locally when a region of interest is fo-
cused, or a limited time scope is chosen. Benefits in local-range anal-
ysis with our method are still effective when the particles are traced in
a local region.

5.4 Observations and Discussion

All cases demonstrated in this section are from typical applications
from flow visualization and analysis. The advection-based sparse
data management greatly benefits the data access in various platforms,
ranging from single workstation to supercomputing environments. In
summary, the key observations in the three cases are as follows:

• Case I: Our method is memory-efficient, and it enables scalable
visualization of large-scale unsteady flow (e.g. terabyte scale tur-
bulence flow) while requiring a very limited amount of hardware
resources.

• Case II: Our method is I/O bandwidth efficient. It greatly re-
duces the amount of I/O with fine-grained and on-demand data
access.

• Case III: Our method greatly improves both performance and
scalability of the naive task-parallel particle tracing.

There are primarily two parameters for performance tuning, includ-
ing the prefetching depth and the blocklet size. Both of them are usu-
ally empirically determined. As studied by Sisneros et al. [35], in
multi-leveled cache architecture, there is no theoretical ways to choose
optimal prefetching parameters. For example, in processor caching,
the prefetching policies and word sizes are often determined by ex-
periments. In flow visualization and analysis, as the data features ac-
cess patterns are even more complex, it requires even more efforts to
achieve optimal performance. The prefetching depth cannot be too
large, because over-prefetching may saturate the bandwidth[35]. In

512256128643216

100

10

1
512256128643216

100

10

1

10

1
512256128643216

100

10

1

Total Time without Prefetching

Total Time with Prefetching

Optimal Scaling

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(G
B

)

To
ta

l B
yt

e
s

 R
e

a
d

 (
G

B
)

Total Time

Processes

Read Bandwidth

Processes

Total Bytes Communicated

Processes

(d) (e) (f)

1000 1000 100

Bandwidth

Total Bytes Read

114.1

19.4

185.5

42.2

Total Time

Processes

Read Bandwidth

Processes

Total Bytes Communicated

Processes

T
im

e
 (

se
co

n
d

s)

B
a

n
d

w
id

th
 (

M
B

/s
)

B
yt

e
s

(G
B

)

To
ta

l B
yt

e
s

 R
e

a
d

 (
G

B
)

(a) (b) (c)

6432168
10

Total Time without Prefetching

Total Time with Prefetching

Optimal Scaling

100

6432168

100

10
6432168

100

10

1

10

1

Bandwidth

Total Bytes Read

1001000
85.1

80.9

26.0

24.3

Fig. 12. The performance of the FTLE computation of the Isabel dataset with different number of processes and configurations. (a), (b) and (c)
are tested on the Beowulf cluster, while (d), (e) and (f) are tested on the supercomputer. The number of tracer processes and k-v processes are
1:1. Performance with and without prefetching is shown in (a) and (d). (b) and (e), (c) and (f) display the read bandwidth (with total bytes read) and
total bytes communicated with prefetching, respectively. Both performance and scalability are improved in the task-parallel particle tracing using
prefetching.

general, it is usually more memory-efficient to use smaller blocklet
size. However, due to the additional ghost grids storage in blocklets, it
may require additional data access if the blocklets are too small. Ad-
ditional space and time costs are also incurred by the key-value store.

6 CONCLUSIONS

In this work, we have explored a novel advection-based sparse data
management scheme for visualizing large unsteady flow data. We have
made extensive use of key-value store to manage blocklets in memory,
and used hint graphs for predictively guide data I/O. When visualizing
terabyte-scale unsteady flow data, our approach achieved significantly
better space efficiency in memory, as well as high performance and
scalability. Our results demonstrate that such sparse data management
greatly increases the scale of local-range analyses that are feasible for
resource-constrained systems, while it also improves the scalability of
full-range task-parallel particle tracing.

For future work, we want to extend our method for use by in-situ vi-
sualization. Our data management can be extended to handle irregular
and unstructured grid data. We would like to also improve the fine-
grained data partitioning by considering adaptive mesh refinement.

ACKNOWLEDGMENTS

The authors would like to thank Prof. Qingdong Cai for providing the
TB-scale turbulence simulation data. This work is supported by NSFC
No. 61170204. This work is also partially supported by NSFC Key
Project No. 61232012 and the “Strategic Priority Research Program -
Climate Change: Carbon Budget and Relevant Issues” of the Chinese
Academy of Sciences Grant No. XDA05040205.

REFERENCES

[1] O. O. Akande and P. J. Rhodes. Iteration aware prefetching for unstruc-

tured grids. In Proceedings of the 2013 IEEE International Conference

on Big Data, pages 219–227, 2013.

[2] S. S. Barakat and X. Tricoche. Adaptive refinement of the flow map using

sparse samples. IEEE Trans. Vis. Comput. Graph., 19(12):2753–2762,

2013.

[3] E. Bethel, J. van Rosendale, D. Southard, K. Gaither, H. Childs, E. Brug-

ger, and S. Ahern. Visualization at supercomputing centers: The tale of

little big iron and the three skinny guys. IEEE Comput. Graph. Appl.,

31(1):90–95, 2011.

[4] B. H. Bloom. Space/time trade-offs in hash coding with allowable errors.

Commun. ACM, 13(7):422–426, 1970.

[5] K. Bürger, F. Ferstl, H. Theisel, and R. Westermann. Interactive streak

surface visualization on the GPU. IEEE Trans. Vis. Comput. Graph.,

15(6):1259–1266, 2009.

[6] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp. Parallel I/O

prefetching using MPI file caching and I/O signatures. In SC08: Pro-

ceedings of the ACM/IEEE Conference on Supercomputing, pages 44:1–

44:12, 2008.

[7] B. Cabral and L. C. Leedom. Imaging vector fields using line integral

convolution. In Proceedings of SIGGRAPH 1993, pages 263–270, 1993.

[8] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. I. Joy. Streamline in-

tegration using MPI-hybrid parallelism on a large multicore architecture.

IEEE Trans. Vis. Comput. Graph., 17(11):1702–1713, 2011.

[9] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-

rows, T. Chandra, A. Fikes, and R. Gruber. BigTable: A distributed stor-

age system for structured data. In OSDI’06: Proceedings of Symposium

on Operating Systems Design and Implementation, pages 205–218, 2006.

[10] C.-M. Chen, B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Flow-guided

file layout for out-of-core pathline computation. In Proceedings IEEE

Symposium on Large Data Analysis and Visualization 2012, pages 109–

112, 2012.

[11] C.-M. Chen, L. Xu, T.-Y. Lee, and H.-W. Shen. A flow-guided file layout

for out-of-core streamline computation. In Proceedings of IEEE Pacific

Visualization Symposium 2012, pages 145–152, 2012.

[12] L. Chen and I. Fujishiro. Optimizing parallel performance of streamline

visualization for large distributed flow datasets. In Proceedings of Pacific

Visualization Symposium 2008, pages 87–94, 2008.

[13] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp. Hiding I/O la-

tency with pre-execution prefetching for parallel applications. In SC08:

Proceedings of the ACM/IEEE Conference on Supercomputing, pages

40:1–40:10, 2008.

[14] M. Edmunds, R. S. Laramee, G. Chen, N. Max, E. Zhang, and C. Ware.

2564 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS,   VOL. 20,   NO. 12,   DECEMBER 2014

Surface-based flow visualization. Computers & Graphics, 36(8):974–

990, 2012.

[15] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient computation

and visualization of coherent structures in fluid flow applications. IEEE

Comput. Graph. Appl., 13(6):1464–1471, 2007.

[16] H. Guo, F. Hong, Q. Shu, J. Zhang, J. Huang, and X. Yuan. Scalable

Lagrangian-based attribute space projection for multivariate unsteady

flow data. In Proceedings of IEEE Pacific Visualization 2014, pages 33–

40, 2014.

[17] H. Guo, X. Yuan, J. Huang, and X. Zhu. Coupled ensemble flow line

advection and analysis. IEEE Trans. Vis. Comput. Graph., 19(12):2733–

2742, 2013.

[18] G. Haller. Distinguished material surfaces and coherent structures in

three-dimensional fluid flows. Physica D, 149(4):248–277, 2001.

[19] M. Hlawatsch, F. Sadlo, and D. Weiskopf. Hierarchical line integration.

IEEE Trans. Vis. Comput. Graph., 17(8):1148–1163, 2011.

[20] D. R. Karger, E. Lehman, F. T. Leighton, R. Panigrahy, M. S. Levine,

and D. Lewin. Consistent hashing and random trees: Distributed caching

protocols for relieving hot spots on the world wide web. In STOC’97:

Proceedings of the ACM Symposium on the Theory of Computing, pages

654–663, 1997.

[21] W. Kendall, J. Huang, T. Peterka, R. Latham, and R. B. Ross. Toward a

general I/O layer for parallel-visualization applications. IEEE Comput.

Graph. Appl., 31(6):6–10, 2011.

[22] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erick-

son. Simplified parallel domain traversal. In SC11: Proceedings of the

ACM/IEEE Conference on Supercomputing, pages 10:1–10:11, 2011.

[23] R. Laramee, H. Hauser, H. Doleisch, B. Vrolijk, F. Post, and D. Weiskopf.

The state of the art in flow visualization: dense and texture-based tech-

niques. Comput. Graph. Forum, 23(2):203–222, 2004.

[24] T. Li, X. Zhou, K. Brandstatter, D. Zhao, K. Wang, A. Rajendran,

Z. Zhang, and I. Raicu. ZHT: A light-weight reliable persistent dynamic

scalable zero-hop distributed hash table. In IPDPS’13: Proceedings of

IEEE International Symposium on Parallel and Distributed Processing,

pages 775–787, 2013.

[25] T. McLoughlin, R. Laramee, R. Peikert, F. Post, and M. Chen. Over

two decades of integration-based, geometric flow visualization. Comput.

Graph. Forum, 29(6):1807–1829, 2010.

[26] T. McLoughlin, R. S. Laramee, and E. Zhang. Constructing streak sur-

faces for 3D unsteady vector fields. In SCSG’10: Proceedings on Spring

Conference on Computer Graphis, pages 17–26, 2010.

[27] C. Mueller, D. Camp, B. Hentschel, and C. Garth. Distributed parallel

particle advection using work requesting. In Proceedings IEEE Sympo-

sium on Large Data Analysis and Visualization 2013, pages 109–112,

2013.

[28] B. Nouanesengsy, T.-Y. Lee, K. Lu, H.-W. Shen, and T. Peterka. Parallel

particle advection and FTLE computation for time-varying flow fields.

In SC12: Proceedings of the ACM/IEEE Conference on Supercomputing,

pages 61:1–61:11, 2012.

[29] B. Nouanesengsy, T.-Y. Lee, and H.-W. Shen. Load-balanced parallel

streamline generation on large scale vector fields. IEEE Trans. Vis. Com-

put. Graph., 17(12):1785–1794, 2011.

[30] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured

merge-tree (LSM-tree). Acta Inf., 33(4):351–385, 1996.

[31] T. Peterka, R. B. Ross, B. Nouanesengsy, T.-Y. Lee, H.-W. Shen,

W. Kendall, and J. Huang. A study of parallel particle tracing for steady-

state and time-varying flow fields. In IPDPS11: Proceedings of IEEE

International Symposium on Parallel and Distributed Processing, pages

580–591, 2011.

[32] F. Post, B. Vrolijk, H. Hauser, R. Laramee, and H. Doleisch. The state

of the art in flow visualisation: Feature extraction and tracking. Comput.

Graph. Forum, 22(4):1–17, 2003.

[33] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber. Scal-

able computation of streamlines on very large datasets. In SC09: Pro-

ceedings of the ACM/IEEE Conference on Supercomputing, pages 16:1–

16:12, 2009.

[34] H.-W. Shen and D. L. Kao. UFLIC: a line integral convolution algo-

rithm for visualizing unsteady flows. In Proceedings of IEEE Visualiza-

tion 1997, pages 317–322, 1997.

[35] R. Sisneros, C. Jones, J. Huang, J. Gao, B.-H. Park, and N. F. Samatova.

A multi-level cache model for run-time optimization of remote visualiza-

tion. IEEE Trans. Vis. Comput. Graph., 13(5):991–1003, 2007.

[36] S.-E. Yoon, P. Lindstrom, V. Pascucci, and D. Manocha. Cache-oblivious

mesh layouts. ACM Trans. Graph., 24(3):886–893, 2005.

[37] H. Yu, C. Wang, and K.-L. Ma. Parallel hierarchical visualization of large

time-varying 3D vector fields. In SC07: Proceedings of the ACM/IEEE

Conference on Supercomputing, pages 24:1–24:12, 2007.

