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Visualization of Regular Maps: The Chase Continues

Jarke J. van Wijk, Member, IEEE

Abstract—A regular map is a symmetric tiling of a closed surface, in the sense that all faces, vertices, and edges are topologically
indistinguishable. Platonic solids are prime examples, but also for surfaces with higher genus such regular maps exist. We present a
new method to visualize regular maps. Space models are produced by matching regular maps with target shapes in the hyperbolic
plane. The approach is an extension of our earlier work. Here a wider variety of target shapes is considered, obtained by duplicating
spherical and toroidal regular maps, merging triangles, punching holes, and gluing the edges. The method produces about 45 new
examples, including the genus 7 Hurwitz surface.

Index Terms—regular maps, tiling, tessellation, surface topology, mathematical visualization

1 INTRODUCTION

In graph theory, a map is a crossing-free embedding of a graph on
a surface. A regular map is a map that is vertex-, face-, and edge-
transitive, i.e., each vertex, face, and edge is topologically indistin-
guishable from the other elements of the same type. Classic examples
of regular maps are the Platonic solids, which are regular maps on
spheres. But also for surfaces with higher genus g such regular maps
can be found. The genus is informally equal to the number of holes
in the shape. The Euler number χ = V − E + F , with V the num-
ber of vertices, E the number of edges, and F the number of faces is
an invariant for the genus of the surface, and for orientable surfaces
χ = 2−2g.

Regular maps on tori, genus 1 surfaces, can be found easily. As
an example, folding a chessboard by matching opposite sides gives
a torus decorated with a regular map. For genus 2 and higher, the
problem to produce visualizations of regular maps is much more com-
plex. It is known what regular maps exist. Conder [4] has enumerated
all reflexible regular maps on orientable surfaces up to genus 101, and
found 6104 different cases. Each map is described here via its symme-
try group. In graphics terminology, the structure of the faces, edges,
and vertices is given, but no possible geometric realization, i.e., no
possible space models are given.

It is a fascinating problem to produce space models of regular maps:
surfaces embedded in 3D, decorated with colored faces, edges, and
vertices depicting regular maps. Regular maps are not an esoteric,
abstract concept, they can be described in a very concrete and geo-
metric way. For instance, the Hurwitz genus 7 surface consists of 168
triangles, at each vertex 7 triangles meet, and each Petrie-polygon (a
closed zig-zag path over the edges) has 18 edges. But, what could
such a shape look like? The papers of Carlo Séquin [20, 21, 22] give
an interesting and entertaining account on how to attack this problem;
we argued earlier [24] that this class of puzzles is close to perfect.

Also, the scope of this topic is large. Regular maps relate to many
different branches of mathematics [14]. Symmetry is described by
algebra, shapes by geometry, and regular maps can be studied from the
point of view of surface topology, combinatorial group theory, graph
theory, hyperbolic geometry, and algebraic geometry. Finally, there is
an artistic interest, as these highly symmetric objects lead to complex
and fascinating shapes.

Roughly, there are two main approaches to come up with solutions
for the visualization of regular maps. The work of Séquin is the key ex-
ample of the manual approach. He has produced a steadily growing set
of space models of regular maps by attacking them one by one, using
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a combination of heuristics, insights, and a variety of media, ranging
from sketches to computer models to 3D printing. An alternative is to
use an automatic approach. In 2009 we translated the problem into au-
tomatically finding matching patterns in hyperbolic space. About 50
new solutions resulted, but for many regular maps it is still unknown
what their space models could look like.

The choice of the target surface is important, both in manual and
automatic approaches. Typically a smooth closed surface is used, cov-
ered with a face-transitive map. Decorating each face with the same
pattern should hopefully lead to a depiction of a regular map. Séquin
used a tetrus, the shape that results when replacing the edges of a tetra-
hedron by tubes, to visualize regular maps of genus 3. We extended
this approach, and used tubified regular maps as target surfaces, where
quarter tubes were used as target faces.

In this paper we present a generalization of our earlier approach. We
use a richer set of target surfaces, obtained by duplicating space mod-
els of regular maps of genus 0 and 1, merging triangles, systematically
punching holes, and gluing the edges. This leads to a face-transitive
map, consisting of topologically identical faces, configured in a cer-
tain pattern, and which may have vertices of different valences around
their perimeter. Also, regular maps can be simplified to face-transitive
maps. This approach is more generic than the earlier approach, which
was limited to the use of tubified regular maps as target shapes.

Like in the earlier approach, we use a two-step matching process to
find new solutions. First, simplified regular maps and target surfaces
are matched, to find combinations of these with similar faces and sim-
ilar patterns; next, exact solutions are sought for by aligning points of
the target surface with points of the regular map in hyperbolic space. A
novelty here is the smoothing of meshes in hyperbolic space, leading
to edges with less kinks.

Compared to the earlier approach, the number of regular maps that
can be visualized almost doubles, and all examples given in this paper
are new. Specifically interesting is the first visualization of the Hurwitz
genus 7 surface, also known as the MacBeath surface.

In the next section we give a short introduction on concepts used,
and discuss related work. Next, we give a global overview of our ap-
proach in Section 3, followed by a detailed description of the various
steps in Sections 4 to 7. Results are presented and discussed in Sec-
tion 8, followed by conclusions in Section 9.

2 BACKGROUND

As mentioned, regular maps are located at the intersection of differ-
ent branches of mathematics, and to understand and process regular
maps, some background is needed. We assume basic knowledge of
group theory and hyperbolic geometry. We used Beardon [2], Ka-
tok [12], and Anderson [1] for understanding tilings, Fuchsian groups,
and hyperbolic geometry; Firby and Gardiner [9] for surface topology;
Coxeter [6], Coxeter and Moser [7] and Conder and Dobcsányi [5] for
regular maps. Here we describe some basic concepts and terminology,
mainly by examples, that are used in the following sections.
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Fig. 1. A triangular tiling is produced by reflecting a triangle MNO over
its edges, using reflections a, b, and c. The corresponding group is the
triangular group. Here T (6,3,2) is shown, and the vertices M,N, and
O are of order 6, 3, and 2. The original vertices and their copies can
be partitioned into three fixed point sets, indicated by the color of the
vertices.

2.1 Triangular tilings

We first consider triangular tilings. Consider a triangle MNO with
angles π/p, π/q, and π/r, and let a, b, and c denote reflections on
the edges (see Figure 1). If we repeatedly apply these reflections, the
plane is covered by triangles. The triangle is a fundamental region. If
we limit ourselves to orientation preserving transformations, we can
use the rotations R = ab, S = bc, and RS around the points M, N, and
O. These points are elliptic fixed points of order p, q, and r. As a
result of the repeated rotations, multiple copies of M, N, and O are
produced, so called conjugate or congruent points. We call the points
M, N, and O base points, and a set consisting of a base point and its
conjugate points a fixed point set. If only rotations are used, pairs of
neighboring triangles can be used as fundamental regions.

In terms of combinatorial group theory, the abstract presentation of
the corresponding triangle group is

T (p,q,r) =< a,b,c |a2 = b2 = c2 = (ab)p = (bc)q = (ca)r = I >,

where a, b, and c are the generators, and the following terms are rela-
tors. Elements of the group are produced by concatenating generators
to words, which can be simplified by removing subwords that are equal
to relators. Here, a2 = aa = I denotes that applying a twice leads to
the original result, the term (ab)p denotes that applying the rotation ab
p times also leads to identity. In representation theory, group elements
are represented as matrices, and the group operation is matrix multipli-
cation. Here, the elements denote isometric transformations of either
the sphere, the Euclidean plane, or the hyperbolic plane, represented
as 3D transformation matrices, 2D homogenous transformations, or
Möbius transformations, using the Poincaré disk model for the hyper-
bolic plane.

2.2 Regular maps

Regular polygon tilings can be defined using triangle groups T (p,q,2),
i.e., using right-angled triangles. If we join all triangles around ver-
tices M, we obtain p-sided polygons, and at all vertices q polygons
meet. This is denoted as a {p,q} tiling using the Schläffli symbol. R
denotes a rotation of a polygon around its center M, and S a rotation
around a vertex N. R and S are automorphisms of the tiling, as they
both map the tiling onto itself. As a result, all faces, edges, and ver-
tices are topologically indistinguishable, and the tiling is face-, edge-,

M

N O

Fig. 2. Plane model of a regular map: R5.6 of {4,8} type. The group of
R5.6 is obtained by adding for instance the relator (abc)8 to T(4, 8, 2).
Some pairings of edges are indicated with arrows, a space model is ob-
tained when the surface is lifted to 3D and paired edges are glued. The
crossings of the arrows indicate that this closed surface is not a sphere,
and indeed, a genus 5 surface is required. Unique colors are used to
show the faces of the regular map, the triangles of the associated trian-
gle group are shown using a light-dark modulation.

and vertex-transitive. The presentation of the corresponding group of
automorphisms is

G(p,q) =< R,S |Rp = Sq = (RS)2 = I >,

where the relator (RS)2 describes a full rotation around the center O
of an edge.

The Platonic solids can be described directly using these definitions
as tilings of the sphere, i.e., {3,3},{4,3},{3,4},{5,3}, and {3,5}.
Two other tilings of the sphere are the hosohedron, also known as
beachball, described by {2,q}, and the dihedron, given by {p,2}.

The tilings {4,4},{3,6}, and {6,3} cover the plane with squares,
triangles, and hexagons. To obtain a regular map on a torus, we cut
out a part of the tiling and match opposite sides. The corresponding
group is a quotient group of the original group, obtained by adding a
relator. Taking the chessboard as an example again, the transformation
RS−1 translates a square one step to the right, hence a group G(4,4)
with (RS−1)8 as additional relator represents a torus covered with 64
squares.

Tilings with 2p+2q− pq < 0 cover the hyperbolic plane. As long
as this constraint is satisfied, arbitrary values for p and q can be used,
in contrast to the sphere and the plane, which permit only a limited
set. Such tesselations can be conveniently depicted using the Poincaré
disk model. Also here regular maps can be derived by cutting out a
part of the tesselation and matching edges at the boundary, leading to
a closed surface of genus 2 or higher. Again, the associated group is
obtained by adding relators. This is illustrated in Figure 2, showing
a plane model of a regular map. Such a plane model can easily be
derived from the definition of a group, but to fold up this model to a
space model that shows symmetries of the map is far from trivial, and
the primary challenge discussed in this article.

Conder and Dobcsány [5] have enumerated all regular maps of
genus 2 to 15 on orientable surfaces with a computational group theory
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approach, using exhaustive search, optimized software, smart heuris-
tics, and hundreds of hours of computer time, later Conder has enu-
merated all regular maps up to genus 101 [4]. In their lists reflexible
regular maps are denoted with a label Rg.i, where g is the genus of
the surface and i an index. They do not list dual maps (where vertices
and faces swap roles) separately, we use a prime to indicate that we
consider dual maps. For each map a set of additional relators is given.
His list of reflexible regular maps on orientable surfaces contains 6104
entries, counting dual maps separately. The description in terms of
generators and relators precisely describes the topological structure,
and can be used to visualize the regular map as a plane model in the
hyperbolic plane. Figure 2 shows a plane model of regular map R5.6,
which we use as running example. But, no information is given how
such a plane model can be mapped nicely on a closed surface embed-
ded in 3D, leaving this as a challenge for the graphics, visualization,
and mathematical art communities.

2.3 Space Models of Regular maps

Depictions of Platonic solids are literally classic, but space models
of regular maps on surfaces with genus 2 and higher have only been
studied more recently. Klein’s regular map, also known as the Hur-
witz surface of genus 3, consists of 56 triangles with 24 vertices where
seven triangles meet. Such a {3,7} tiling is special, as Hurwitz [11]
has proven that for these tilings the maximal number of 84(g−1) sym-
metries is obtained for a surface with genus g. Schulte and Wills [19]
found a polyhedral version of this regular map in 1985; and more
examples of polyhedral models have been found, see for instance
[3, 8, 18]. Helaman Ferguson’s sculpture The Eightfold Way, 1993,
at MSRI in Berkeley [13] visualizes Klein’s map on a thickened and
smoothed tetrahedral wireframe, in white Carrara marble.

Séquin [20] took inspiration from this work, and presented more
examples of regular maps, such as a {4,5} map on a genus 4 surface
[21], and space models of (among others) R2.4, R2.5, R3.11, R5.10,
and R5.11. His papers are inspiring for people that want to attack this
problem by hand, and vividly show how a rich set of media can be
used for analysis and presentation.

In 2009, we presented an automatic approach to visualize regular
maps [24]. The method is based on finding a match between a reg-
ular map and a target surface in hyperbolic space. To obtain target
surfaces, space models of regular maps were used as starting point,
and the edges were replaced by tubes, where each tube is modeled
with four symmetric faces. Next, these faces were aligned with the
regular map in hyperbolic space, by selecting points of the regular
map as corner points of one face such that symmetries were satisfied.
Next, the pattern of the regular map was projected to the target sur-
face, based on this alignment. To construct target surfaces, not only
space models of genus 0 and 1 regular maps were used, but also space
models of higher genus regular maps that resulted from applying the
method. This recursion gives rise to highly intricate and complex, but
still highly symmetric target surfaces.

Razafindrazaka [16] has shown how aesthetically more pleasing re-
sults can be obtained by applying a force-directed method on the edges
before they are tubified; another recent result is a new and highly sym-
metric space model for R13.2 [17].

Our earlier method produced about 50 new models, but also, many
regular maps escaped, as no match could be found. Here we extend
his method by using a richer collection of target surfaces and allowing
for more complex faces besides quarter tubes.

3 APPROACH

For a high level description of our approach, we start with a much
simpler problem: the visualization of cyclic groups, using a practical
case. Suppose that we have the task to mark 18 intervals on a clock,
which has 12 marks for 5 minute intervals. We observe that 18 and
12 have 6 as greatest common divisor, and that we can decompose the
18 intervals into 6 sets of three intervals, and 12 into 6 sets of two
intervals. We can visualize this along a line, and see that each set of
three given intervals has to be matched to two intervals on the clock.
We map this pattern of three intervals to 10 minute intervals on the

Fig. 3. Factorization HA of R5.6, with H = C2 ×D8, where D8 is the
dihedral group with 8 elements. H is generated by rotations over π

around the points M, N, and O. (a) All triangles Hai,ai ∈ A, i = 1, . . . ,8
are labeled and colored according to their label; (b), (c), and (d) show
some possible choices for A, giving different fundamental regions: sets
of triangles with different labels are combined and given unique colors.

clock, and we are done. More technically, we decompose the cyclic
group C18 into C6 ×C3, the target into C6 ×C2, and align the patterns
within each element of the two C6 groups.

Our approach is comparable, but here we have to deal with more
complex groups; instead of matching along a line we match on the
hyperbolic plane; and we are not constrained to using a circle as target,
but have freedom to define target surfaces with a certain structure.

We first discuss how to factorize maps. We systematically merge
triangles, and present characterizations of the resulting patterns and
faces, such that we can match the overall structure of regular maps
and possible target surfaces. Next, we present a new approach to pro-
duce surfaces with genus greater than 0, based on duplicating surfaces,
merging triangles, punching holes, and gluing the edges. The factor-
izations of the patterns of the map and the target surface help to find
matches, which have to be carefully aligned, as discussed next.

4 FACTORIZATION

First we consider how to factorize maps and how to obtain compact
representations of these. Suppose that we have a closed surface with
a face-transitive tiling with associated group G. This includes regular
maps, where G is a quotient group of the triangle group. We can de-
compose this group as G = HA, where H is a subgroup of G and A a
subset (not necessarily a group) of G. For an example, see Figure 3.
The yellow triangles, labeled with 1, are the elements of H. They are
produced by repeated application of a set of generating transforma-
tions, here R2,S4, and RS (rotations over π over M,N, and O), on the
triangle that corresponds with the identity element. As a next step, we
take another triangle, not yet colored, assign a new label and color,
and again apply the generating transformations. We repeat this until
all triangles are labeled and colored. Now, for A we can select arbi-
trary sets of triangles, as long as all labels are represented and each
triangle in A has a different label. To produce nice faces however, we
select sets of neighboring triangles and require the boundary to be con-
vex. Specifically, the boundary should be hyperbolically convex: inner
angles should be ≤ π , edges should be hyperbolic lines, i.e., circular
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Fig. 4. Example of a fundamental region of a Fuchsian group, based on
Figure 3(c). Vertices that belong to the same set of conjugate points are
assigned the same color, the first five points are base points. Associated
with these are rotations Ri over π, hence all base points are of order 2.
Furthermore, pairwise mappings of edges are shown.

(a) (b) (c) (d)

Fig. 5. (a) Folding up the fundamental region of Figure 4 gives a sphere,
decorated with vertices and a cut line; (b) similar, for Figure 3(d); (c)
standard cuts used for explaining Fuchsian groups, using an extra order
1 vertex; (d) the fundamental region can be characterized by the genus
of the surface, and the number of fixed elliptic points and their orders.
This is summarized in the Fuchsian signature, here (0; 2, 2, 2, 2, 2).

arcs in the Poincaré disk model. This set of triangles is a fundamental
region. By considering each copy of this set as a face, we obtain a
face-transitive tiling of the regular map. Multiple choices are possible
(see Figure 3), and also choices can be made that do not align with
triangle boundaries (see Figure 10).

The group H describes the overall pattern of the faces, next we need
to describe the faces themselves in a generic way. For this, the concept
of Fuchsian groups [2, 12] is very convenient, here we give an infor-
mal introduction. Poincaré has studied face-transitive tilings [15]. In
such tilings all edges of a face can be pairwise mapped, and at each
vertex the sum of the angles of all incident faces adds up to 2π (see
Figure 4). Some vertices are copies of other vertices at the boundary,
so-called conjugate points. The number n of different vertices, exclud-
ing conjugate points, and their degree of rotational symmetry or order
mi, i = 1, . . . ,n, are characteristic for the tiling. Furthermore, because
all edges can be mapped to each other, we can turn a single face into a
closed surface by gluing corresponding edges, giving a so called orb-
ifold (see Figure 5, where the orbifold is a sphere). The genus g of
this surface can be larger than 0, and is another characteristic. Taken
together, the signature of a Fuchsian group is (g;m1,m2, . . . ,mn), and
this gives a compact representation of the tiling, independent of the
arbitrary choice of the fundamental region.

Suppose now that we have a regular map with associated group GS

as source, and a possible target surface with matching genus g, which
has a face-transitive map with associated group GT , each of which can
be decomposed via GS =HSAS and GT =HT AT . A minimal condition
for mapping here is that HS and HT are equal: both source and target
must have the same number of faces, with the same structure. This
condition can be trivially satisfied by using HS = HT = I, but that
leaves us the difficult problem how to map the plane model in one step
to the target surface. We therefore aim for large common subgroups
of GS and GT for which the signatures of the Fuchsian groups of the
source and target tiling are equal.
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Fig. 6. Basic operations to obtain target surfaces. (a) The original sur-
face is duplicated, giving two copies. A new generator d is introduced,
actions like db and cd act as rotations around edges of the original sur-
face. (b) Next, areas around points, here N, are removed and new order
2 rotation points are introduced. (c) The edges of the holes are glued.
The original order 3 rotation point is replaced by six new rotation points,
in two different classes.

5 TARGET SURFACES

Earlier, we used tubified wireframes of regular maps. We can also ob-
tain such surfaces as follows (see Figure 6). We duplicate the surface
of a regular map, i.e., we form positive and negative offset surfaces
above and below the given regular map. Next, we remove the cen-
ters of the faces of the regular maps and cut holes in both surfaces.
Finally, we glue all edges of pairs of holes, forming connecting tun-
nels between the two offset surfaces. Thus we obtain again one single
closed surface, but with more faces and a higher genus. This inspires
us to generalize this process. We extend it in two ways. First, instead
of just considering faces of regular maps, we consider face-transitive
variations of these, obtained by the process described in the previous
section. Second, we allow for punching multiple fixed point sets. One
special concern here is the derivation of the corresponding groups. In
our earlier work, we derived these manually for tubified wireframes,
here we propose a more generic approach.

5.1 Duplicate and Merge

Our starting point is a genus 0 or 1 surface (a sphere or a torus) covered
by a regular map. We can easily produce a double walled version by
replacing the surface by two copies, one offset to outside, the other
offset to the inside. As a result, the number of triangles and the order
of the group doubles. To describe the group structure of this double
walled version, we introduce a new generator d, besides a,b, and c
that generate the triangle group (see Figure 6a). The effect of d is that
a triangle is moved from one wall to the other wall. At first, this seems
to be a translation, however, it is better characterized as (yet another)
reflection. The outside of the triangle becomes the inside, and also,
repeating d twice gives identity, i.e., d2 = 2. Next, we consider the
effect of combining d with a,b, and c. Figure 6a shows that (cd)2 = I:
if we flip a triangle along an edge (c); move it to the other wall (cd); flip
it again (cdc); and move back to the original wall (cdcd); the triangle
is back to its original position. In other words, cd can be considered as
a rotation around an edge of the original surface, and the same holds
for bd and ad.

A regular map on a sphere can be defined via a triangle group
T (p,q,2). The preceding discussion leads to a definition of the group
of the new, double walled shape:

GT (p,q,2) =< a,b,c,d |a2 = b2 = c2 = d2 =

(ab)p = (bc)q = (ca)2 =

(ad)2 = (bd)2 = (cd)2 = I > .

For regular maps on tori and on higher genus shapes, the same addi-
tional relators as for the original maps have to be added.
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Fig. 7. Mesh used for modeling target surfaces. (a) For each triangle a
rectangular mesh is used, on which mesh triangles are defined. A set of
possible chop lines is indicated. (b) Mesh after chopping M and N and
introducing new fixed points.

The next step is to merge triangles to obtain larger faces and face-
transitive maps. In the preceding section we described how to factorize
triangulations, and the same procedure can be used here. To keep im-
plementation efforts within bounds, we use the following restrictions
on HT , AT , and the associated fundamental regions F :

• Copies of F must be congruent without reflections, in other
words, only subgroups HT are used that result from generators
with words with an even number of elements a, b, c, and d. One
consequence is that F consists of an even number of triangles;

• d should appear in one of the generators of HT , such that an F
can be found that is located on one of the walls only; also, ap-
plication of d on F should produce a counterpart located directly
opposite at the other wall;

• F must be hyperbolically convex;

• The genus g of F must be 0.

We used GAP [10] to derive subgroup lattices of the extended
groups for regular maps up to genus 50 and stored these for further
processing. Besides descriptions of the subgroup in terms of genera-
tors, GAP also provides descriptive names for the groups. These are
useful for understanding, and also for fast tests on group equivalence,
which is needed for matching HS and HT .

Given an appropriate subgroup HT , finding fundamental regions AT

that meet the requirements for simplicity is fairly straightforward. We
used a breadth first search algorithm to enumerate different solutions.

5.2 Chop and Glue

The next step is to turn the double walled object into one closed surface
again. First, we determine fixed point sets Pi, i = 1, . . . ,n for the n
base points from the fundamental regions found in the preceding step.
For each of these sets, we can remove a region around all points in
the set, and glue the boundaries of corresponding regions at opposite
walls. As a result, we obtain a single closed surface with multiple
tunnels between the two offset surfaces. The group structure of this
surface is the same as described in the previous section: we do not
introduce new faces, remove or add symmetries. However, the genus
of the surface and the signature of the Fuchsian group of the covering
tiling do change.

The effect of the duplicate operation on the genus of the surface is
that the Euler number χ doubles, as the number of vertices, edges, and
faces doubles. Furthermore, if two points with s incident edges are
chopped and glued, s new vertices and edges are created (which has
no effect on χ , as they cancel each other), but also two original points
are removed. Hence, if in total k points are chopped, χ decreases with
2k. Using primes to denote the new values, we find χ ′ = 2χ −2k, and
after substitution of χ = 2−2g we find g′ = 2g+ k−1.

Fig. 8. Examples of different instances of similar target surfaces.
The starting point is a duplicated 4-hosohedron, with pairs of triangles
merged to faces (A = {I,b}). Each face is assigned a unique color. (a)
The target surface is obtained by duplicating and chopping M and N

points. (b) Using larger holes makes the interior better visible. (c) Mor-
phing the surface to a punched disk clearly shows that this is a genus 5
surface. (d) Using a punched ring visualizes the group structure C2 ×D8

of the faces. The ring can be rotated around the central axis through
four steps of π/2 and through π around a line through two opposite
holes (D8); the wall of the ring can be rotated over π around a circle
through the centers of the smaller holes (C2). Combining these transfor-
mations, each face can be mapped to any other of the 15 faces, i.e., the
map is face-transitive.

Concerning the Fuchsian signature, the genus of the face after fold-
ing up does not change, but the list of orders does. If the original
signature was (g;m1,m2, . . . ,mn), the effect of chopping and gluing of
the point with order m j is that it is replaced by two order two rotation
points (see Figure 6: the blue order three point is replaced by red and
green points of order two). Such a configuration is for instance pro-
duced by generators S = bc (rotation around the center vertices) and
cd (rotation to the other wall around the edge matching with reflection
c on the original surface). After chopping and gluing, six new vertices
are inserted on the incident edges. Each of these vertices has order
two, and they form two sets of conjugate points. The two base points
of these sets correspond to the rotations cd and db.

Multiple fixed point sets can be dealt with in this way, giving a
variety of face transitive maps on surfaces with varying genus. The
simple effect of removing rotational points on the genus of the surface
and the Fuchsian signature can be used to quickly generate alternative
compact descriptions of these target surfaces, which can be used to
find a match with the set of regular maps to be visualized.

5.3 Embedding in 3D

Geometric modeling of the surfaces in 3D is straightforward. We use
grids with a rectangular structure for the triangles covering the spheres
and tori (Figure 7). Offsetting is done using the normals on the sur-
face, chopping base points is done by removing a user defined number
of strips from the corners. In our implementation, this number was
taken to be the same for all corners. As a result, when only one point
is chopped, a large number of strips can be removed, leading to im-
ages similar to the earlier tube-images. However, if multiple points
are chopped, the number of strips that can be removed is limited by
intersecting chop lines. This is not a problem if a depiction as holes is
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Fig. 9. Examples of face-transitive maps on surfaces that were used to
depict regular maps. Various combinations of the number of triangles
merged (|AT |) and the number of chopped base points (C) are shown.
The resulting number of base points n depends on the original number
of base points, which depends on the configuration of the triangles.

desired, but more flexibility would be needed for a tube-like appear-
ance.

The vertices of the boundaries are matched and placed back on the
original surface. Optionally, the vertices at a user defined distance
from the edges can be displaced inward also, to obtain a circular cross-
section of the surface locally. To obtain a smoother surface, we apply
10-30 Laplacian smoothing steps, replacing vertices with the average
of their neighbors. Compared to our earlier work, the meshes that re-
sult seem smoother, especially when many tubular shapes meet. Fig-
ure 8 shows examples of surfaces that can be used for the running case
of regular map R5.6.

Figure 9 shows more examples of target surfaces to visualize regular
maps (see Section 8). The simplest case is obtained by merging two
triangles, and chopping the M or N point, the approach we used earlier.
A target surface for R5.7 is shown as an example. The chopping of
the O point; merging more than two triangles; and chopping multiple
sets of fixed points gives a richer set of target shapes. For instance,
the removal of points along the equator of a hosohedron, as well as
the points at the top and/or bottom, enables us to model disks with a
circular pattern of holes, possibly with a hole in the middle.

6 ALIGNMENT

It seems that we are close to done now. Given a regular map, we know
how to factorize this as HSAS; we know how to produce a variety of
target surfaces and how to factorize these as HT AT ; for a proper match
the groups HS and HT should be equal, as well as their fundamen-
tal regions, characterized by their Fuchsian signatures. However, just
mapping the pattern of a fundamental region of the regular map to its
counterpart on the target surface does not give a proper result: using
Séquin’s terminology [21], the map is only locally regular, and not
globally regular. If both the source and target were infinite tilings, the
map would be globally regular, however, we have to take the wrapping
of faces across the boundaries of the plane model of the regular map
into account. Hence, we have to carefully select fundamental regions
on the regular map to obtain a good result. Figure 10 shows a suitable
choice for the running case R5.6. The fundamental region of the target
surface is shown black, and it obviously does not align with the tiles
of the regular map, colored the same as in Figure 2.

We use a similar approach as in our earlier work [24], but instead
of using fundamental regions with a uniform shape (quarter-tubes), we
allow for more flexibility and therefore have to generalize.

6.1 Procedure

We first describe the problem in more detail. Suppose we want to
visualize some regular map, and that we have a target surface with
matching genus, group, and Fuchsian signature. Furthermore, assume
we have chosen a fundamental region for this target surface, according
to the requirements given in Section 5. Schematically, we can describe
this fundamental region as a polygon with vertices Vi, i = 1, . . . ,m (see
Figure 4 for an example, where we just show the indices of the ver-
tices). These vertices are fixed elliptic points on the target surface,
which are partitioned into n fixed point sets PT

k ,k = 1, . . . ,n, using T
as superscript to distinguish these target sets from the fixed point sets
of the source regular map. Each of those sets has an associated order
mT

k .

Let Li denote the label of the set to which Vi belongs, i.e., Vi ∈ PT
Li

.

We call the first vertex Vi for which Li = k a base point Bk for the
conjugate point set PT

k , and consider other vertices with the same label
as conjugate points of this base point. As all sets of conjugate points
must be represented in a fundamental region, this gives us n such base
points. The next task is to align these base points with fixed points
of the regular map in hyperbolic space, thereby projecting the target
surface back to the regular map.

Also for the regular map we have selected a fundamental region,
which we use in combination with the generators of HS to produce
n sets of conjugate points PS

k ,k = 1, . . . ,n, with associated orders mS
k .

We do not constrain these points to lie at the plane model of the regu-
lar map, but also allow for a limited number of points outside, as the
projected target region might not overlap with this plane model.

We use a depth first algorithm with backtracking to search for so-
lutions. For the first point B1, we select the first element of the first
set PS

k for which mT
1 = mS

k . Next, we select B2, discarding point sets

PS
k for which already a base point has been selected. If one of the

tests applied fails, we select the next point from the current set PS
k ,

and backtrack if all points of a set are exhausted. We do not take the
ordering of the sets PT and PS into account, for instance if mT

1 = 2,

then ultimately all elements of all sets PS
k for which mS

k = 2 can be
considered as candidate points for the projection of B1.

6.2 Tests

During the execution of this algorithm, a number of tests are applied
on the geometry and group structure of the result. Assume that the fun-
damental region of the target has been projected to hyperbolic space.
Let an edge ei be defined as the edge between Vi and Vi+1 (assuming
n+ i = i). There exists a geometric transformation Mi of this funda-
mental region to map an edge ei to another edge e j . Given the labels Li

of the vertices, this other edge is easy to determine: the two relations

to be satisfied are Li = L j+1 and Li+1 = L j. Obviously, Mj = M−1
i .
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Fig. 10. The target map of the shapes shown in Figure 8 is aligned with
plane model of R5.6. One fundamental region is indicated (black), as
well as conjugate copies (blue). Thin lines show that the faces consist of
pairs of chopped triangles. Unique colors are used to show the faces of
the regular map, the triangles of the underlying triangle group are shown
using a light-dark modulation.

Furthermore, we can associate with each base point Bi a counterclock-
wise rotation Ri over 2π/mT

i . These rotations and edge mappings are
related, which we can use to build up the projected fundamental region
and perform checks.

If we look at the example shown in Figure 4, we see that R1 = M1:
the rotation around vertex V1 maps e1 to e8, and V2 to V8. For the
next point B2, we see that M2 also maps V2 to V8, and application of
M8 maps it back to its original position. If we apply the same trans-
formations to the fundamental region, we see that the effect of these

mappings is the rotation R2, i.e., R2 = M2M8 = M2M−1
1 . This pattern

holds in general. Application of Mi to Bi maps it to a vertex Vj , apply-
ing Mj in turn and repeating this step until the vertex is mapped back to
the original point gives a sequence of transformations MiMj . . ., which
is equal to the rotation Ri.

We can use this by maintaining a list of n of these relations, and
solving for an unknown transformation as soon as all but one of the
transformations in a relation have been selected or computed. Fur-

thermore, we see that R4 = M4M−1
3 and R5 = M−1

4 . Hence, the last
point V5 is fixed when V4 has been selected, and if no point from the
last remaining set PS

k that matches with V5 can be found, backtracking
is required. Also, we can eliminate the mappings Mi from the list of
equations, to obtain a single equation in the rotations Ri.

Furthermore, we require the projected fundamental region to be hy-
perbolically convex. The edges computed during the generation of the
projected target map can be used as a clipping area for possible candi-
date points.

Besides the geometry, we also check for alignment of the source
and target groups. A rotation around a base point Bi can be expressed
as a word wi in the target group and as vi in the source group. Be-
fore the alignment procedure, we calculate the orders of words of
the form w1w2,w1w3,w2w3,w1w2w3,w1w4, . . .. During the addition
of new candidate points, we evaluate the orders of the correspond-
ing words v1v2,v1v3,v2v3,v1v2v3,v1v4, . . ., and check if these orders
match with the target results. If not, the new candidate is rejected, and
the search is continued.

Fig. 11. Mapping R5.6 from hyperbolic space (Figure 10) to the target
surface in 3D (Figure 8). (a) The chopped and aligned triangles of the
target surface are meshed in the hyperbolic plane. (b) The mesh faces
are clipped with the edges of the regular map, and the result is trans-
ferred to 3D. This works, but the edges of the regular map have sharp
kinks, see for instance the edges bounding light and darker yellow ar-
eas. (c) This can be remedied by smoothing the target mesh first in the
hyperbolic plane, (d) which gives a space model with much smoother
edges of the regular map. Note that the close-ups of the hyperbolic
plane cannot be directly traced back to the space models.

7 MAPPING

The last step to obtain a space model is the projection of the pattern of
the regular map to the faces of the target surface, and the transfer of this
result to the target surface embedded in 3D. We use a similar approach
as in our earlier work [24], but with some refinements. We use only
the projected fundamental domain of the target surface, project the
pattern of the regular map on this, and map this result to all copies of
the fundamental domain on the surface, taking care that the labels of
the regular map are properly adapted for the different copies.

The first step is to produce a mesh in the hyperbolic plane for the
fundamental domain that is equivalent with the mesh used for the 3D
version (see Figure 11(a)). To this end, per chopped triangle of the
fundamental domain we use hyperbolic lines between vertices, which
we regularly sample to yield boundary points. Next, points at oppo-
site edges are connected by lines and sampled again, yielding a mesh.
Transfer of the regular map to this mesh is done by clipping this mesh
with the edges of the regular map. This is not trivial, as many cells are
crossed by many lines, and also because all kind of special cases can
and do occur. Rather than trying to elaborate all special cases, in the
end we used a simple but more robust approach here. We pick a point
in the interior of a triangle ∆ of the mesh; determine in which triangle
∆S of the regular map this point is located; split ∆ if one the vertices
of ∆S is located inside or when edges cross, and recurse; otherwise ∆
is stored.

Furthermore, some bookkeeping has to be done to maintain the sta-
tus of vertices, faces, and edges for rendering faces and lines with the
appropriate colors. All calculations are done in hyperbolic space, us-
ing the Poincaré disk model. An alternative is to use the Klein model
here, like Razafindrazaka [16] has done, which is faster because hyper-
bolic lines are straight lines instead of circles. However, we found the
overall performance to be acceptable for interactive use. Dependent
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Fig. 12. Regular map R7.1: Visualization of the genus 7 Hurwitz surface

on the resolution of the meshes used, producing mappings typically
takes 0.1 to 5s.

The result is shown in Figure 11(b). We see that just like in some
images of our earlier work, edges of regular maps are not depicted
smoothly, but exhibit strange kinks, for instance in the edges separat-
ing light and dark yellow areas. Here this might be acceptable, in other
cases the results can be much worse. The kinks are due to discontinu-
ities in the direction of mesh-lines across boundaries in the hyperbolic
plane. Higher resolution meshes or smoothing the surface in 3D do
not remedy this, just like in computer graphics acting on a surface to
correct a poor texture map makes no sense.

Fortunately, we found that a much better result can be obtained by
smoothing the meshes in the hyperbolic plane before the mapping is
done (see Figure 11(c) and (d)). We do this for the mesh of the funda-
mental region of the target surface, using iterative Laplacian smooth-
ing, with periodic boundary conditions. We keep the rotational points
fixed, for the other points we replace these per step by the average
of their four direct neighbors. If a point is located at the boundary,
one or two neighboring points might be absent. For these we use vir-
tual points, obtained by translating points in the mesh according to the
transformation Mi described in the previous section.

8 RESULTS

In this section we present results and discuss these. The approach
described in the preceding sections leads to about 45 new space models
of regular maps, counting duals separately. Also, the earlier space
models directly derived from genus 0 and 1 surfaces are reproduced,
but not the models derived recursively from higher genus surfaces. The
latter should be possible in principle also with this approach, but it is
much harder to implement. The earlier tubification approach nicely
exploits a simple homogenous intermediate representation (wireframe
models), here such a representation does not pop up naturally.

Figure 13 shows 25 examples of results. From top to bottom, these
are sorted for target surface used (first two rows: hosohedra; third
row: Platonic solids; last two rows: tori); from left to right for genus.
Séquin [21] already had found a somewhat complex solution for R4.2
{4, 5} (after observing that the use of a disk with four symmetric holes
does not work out), the solution shown in Figure 13 is simpler. In
these figures we typically use 4-6 different colors, using subgroups of
the group of the regular map to decide upon which color to use for
what face. When all faces are colored differently, they are hard to
distinguish. However, some regular maps, such as R7.1, do not have
subgroups such that only a limited number of colors can be used, and
for this 28 colors and 35 for its dual had to be used.

Six new regular maps based on Platonic solids were found: R9.16,
R19.3, R29.10 and their duals. The surface used for R9.16 is the result
of chopping face and edge points of a double-walled tetrahedron. The
space models of R29.10 and its dual are obtained by chopping edge
points of a double-walled icosahedron. Also, they can be considered
as a tubified rhombic triacontahedron. The surfaces are uniformly cov-
ered with starfish-like shapes, with three (R29.10) bent legs (forming

a triskele) or five (R9.10’) zig-zag legs. Each leg here folds around
seven tubes before reaching its endpoint.

Figure 12 shows a space model of the genus 7 Hurwitz surface, also
known as the MacBeath surface. In Section 2 we mentioned Hurwitz
surfaces. Such surfaces with a maximal number of symmetries are
rare, the first few cases are obtained for g = 3,7,14, and 118. The
Hurwitz surface for genus 3 is regular map R3.1, R7.1 is the next one.
The associated group of automorphisms is PSL(2,8). Séquin has spent
much effort to find space models for this regular map, and made draw-
ings what these could look like, using a 2D disk model [23]. These
results confirm his findings, and are the first digital model and 3D vi-
sualization of R7.1.

Images of this surface were distributed among a number of ex-
perts in geometry (including Marston Conder, Jörg Wills, and Jürgen
Bokowski), and they were all excited. The study of regular maps is
an active area in mathematics, and finding a polyhedral version (with
flat triangles and without self-intersections) of this surface has been a
long standing research problem and it is still open. This visualization
is not polyhedral, but it does provide insight why such a polyhedral
realization might not exist, as many long curve segments go around
the rim of the shape.

These results show that our approach is more generic than our
earlier work, and as a result, the number of regular maps that can
be visualized almost doubles. Furthermore, the resulting images are
smoother, thanks to the smoothing of the mesh in the hyperbolic plane.

Still, there is work to be done, and we hoped that many more re-
sults would have come out. The alignment phase is critical here, for
many cases we found matching source regular maps and target sur-
faces, with compatible groups and Fuchsian signatures, but the algo-
rithm was not able to find suitable alignments. For instance, there is a
match between R14.1, the next Hurwitz surface, and a 13-hosohedron,
with D26 as group and (0; 2, 2, 2, 2, 2, 2) as Fuchsian signature. This
suggests that R14.1 can be mapped on a ring with 13 holes, but no
solution was found. The causes for this are unclear yet. It might be
that the restrictions we put on fundamental regions (see Section 5) are
too constraining, also, there might be other implicit assumptions (and
flaws) in our implementation. The chase is not over yet.

Another area where improvements can be made is the visual repre-
sentation. Static images fall short to fully understand the structure of
the more complex cases, and also with animation (see accompanying
video) and interactive viewing it is still often difficult to understand
what is going on. The use of physical models, made by 3D printing,
will lead to results that are easier to understand. However, we think
this complexity is an important part of the charm of these objects, i.e.,
the fact that very compact definitions of highly symmetric and regular
structures can lead to shapes with a wild complexity that is not easy to
grasp at first sight.

9 CONCLUSION

We have presented a generalization of our earlier approach to visual-
ize regular maps. The key idea is to factorize regular maps and target
surfaces, to find matchings between their shape and structure. A broad
class of target surfaces could be defined based on the process of dupli-
cating surfaces, merging triangles, punching holes, and gluing edges.
The use of concepts from group theory was highly useful to provide a
solid grounding as well as for implementation. As a result, about 45
new space models for new regular maps could be found, including for
the genus 7 Hurwitz surface; but there are still many cases waiting for
solutions.

We hope that these results are useful, not only for mathematicians,
but also for a broader audience, for purposes such as education (as
concrete examples of abstract concepts), entertainment (trying to un-
derstand the structure and solving new cases), and artistic use.
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Fig. 13. Results. Rg.i: regular map using Conder’s notation, g: genus; {p, q}: polygons have p edges, at vertices q edges meet; (F,E,V ): number
of faces, edges, and vertices.
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