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Fig. 1. An illustration of the reachability graph over a real-world data set with four scalar fields. (a) depicts color maps of the scalar
fields. The reachability graph shown in (b) provides the decomposition of the domain indicated by color in (c).

Abstract—Topological and structural analysis of multivariate data is aimed at improving the understanding and usage of such data
through identification of intrinsic features and structural relationships among multiple variables. We present two novel methods for
simplifying so-called Pareto sets that describe such structural relationships. Such simplification is a precondition for meaningful
visualization of structurally rich or noisy data. As a framework for simplification operations, we introduce a decomposition of the data
domain into regions of equivalent structural behavior and the reachability graph that describes global connectivity of Pareto extrema.
Simplification is then performed as a sequence of edge collapses in this graph; to determine a suitable sequence of such operations,
we describe and utilize a comparison measure that reflects the changes to the data that each operation represents. We demonstrate
and evaluate our methods on synthetic and real-world examples.

Index Terms—Multivariate Topology, Pareto Set, Simplification, Decomposition

1 INTRODUCTION

Topological visualization techniques capture extremal structures in
data and identify intrinsic features in terms of these structures and as-
sociated points, to provide an abstract understanding of data sets.

Especially in the context of increasingly complex and large data
sets that result from modern scientific computing methods, an abstract
depiction that reduces the data to important features are of increasing
importance. This abstraction however must include all relevant infor-
mation while concealing the unimportant aspects of the data such that
intuitive understanding and insight are still possible.

Established methods for topological analysis and visualization,
such as contour trees, identify critical points and regions as well as
their connections. Areas of similar behavior are determined to derive
a segmentation of the data domain. For univariate data like scalar or
vector fields, i.e. where for each position only one scalar value or vec-
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tor is given, such methods are already introduced and well studied even
in high-dimensional domains, cf. e.g. [2] for the scalar case.

A few techniques also exist for the case of multivariate data, where
for each position multiple scalar variables are provided. These include
Jacobi sets [5], joint contour nets [1], and Pareto sets [10]. Some of
these techniques are summarized in Section 2 to provide a context to
the work of this paper. The application of these techniques is however,
as is typical for topological approaches, difficult when the data to be
analyzed is noisy or structurally rich; the resulting topological struc-
tures can be extremely complex, and adequate insight cannot be drawn
from corresponding visualizations.

A straightforward idea in this setting would be to apply common
topological simplification techniques to the individual scalar fields of
a multivariate data set before application of multivariate topological
analysis. However, such an approach would neglect the functional
relationship that might exist between the separate functions, as well
as the information given through any multivariate topology. Hence, it
appears sensible that structural simplification should be performed on
the multivariate structure.

In this context, we propose an approach to achieve structural sim-
plification of Pareto sets over multivariate data. To this purpose, after
recapitulating the basic concepts underlying the Pareto set approach in
Section 3, this paper provides the following contributions:

• We present a scheme, inspired by previous work [10], to com-
pute a reachability graph between Pareto sets of a multivariate
function (Section 4).
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• We describe operations on the reachability graph that simplify
its overall structure, discuss the implementation of these changes
in terms of the underlying function, and propose a measure that
determines an order of simplification steps (Section 4).

• To obtain a basis for comparative evaluation, we extend an ap-
proach on the simplification of Jacobi sets [17] to multivariate
data with an arbitrary number of variables (Section 5).

We illustrate and compare both simplifications on analytic exam-
ples and a typical application from the domain of flow visualization in
Section 6, aimed at understanding the differences between vortices as
described by multiple scalar indicators. The paper concludes with a
discussion of the relative merits of each scheme, as well as an outlook
towards promising future work.

2 RELATED WORK

There is a very large body of work on topological visualization tech-
niques. We therefore focus specifically on surveying topological ap-
proaches to univariate and multivariate data that are related to the ap-
proach presented in this paper.

For scalar fields, a common topological representation is the so-
called Reeb graph, or, in the case of simply connected domains, the
contour tree [4, 13, 12]. Both track the evolution of connected com-
ponents of the isosurfaces or level sets, i.e. changes to the preimages
of scalar values in the data range. Individual components give rise to
edges in the graph, and birth, death, merging, and splitting of compo-
nents is represented by critical points, i.e. the graph’s nodes. Another
approach by Chiang et al. [3] constructs contour trees through traversal
along monotone ascending and descending paths.

A second framework for the topological analysis of scalar data are
Morse-Smale complexes [8, 15]. Here, loosely speaking, the data do-
main is decomposed based on common behavior with respect to gra-
dient ascent or descent. In this context, common behavior means that
two points reach the same maximum and minimum if ascending, re-
spectively descending a path parallel to the scalar gradient field.

For both approaches, simplification techniques have been proposed
and studied, with the aim of allowing topological visualization of
structurally rich data. In many applications, structural richness may
result from noise or sampling inaccuracies, and robust topological vi-
sualization should ideally be impervious to such phenomena.

For example, the concept of persistence in general captures the ex-
istence interval of topological features as scalar values change. For
two adjacent nodes in a Reeb graph, this corresponds to scalar value
difference between the corresponding critical points [7]. Under the as-
sumption that unimportant features or those resulting from noise have
low persistence, i.e. tend to disappear under slight changes to the data,
they can then be safely omitted from visualization. Such simplifica-
tion must be consistent in the sense that it captures the topological
structure of hypothetically modified data that is close to the original.
Recent work introduced a flooding-based method that “fills” a feature
up without introducing new ones [19]. For further literature towards
univariate simplification, start for example with Gyulassy et al. [9].

For multivariate (scalar) data, topological visualization is still in its
infancy. A general approach taken is to extend the theoretical frame-
work from the univariate case to multiple scalar fields. Edelsbrunner
et al. extended Reeb graphs into Reeb spaces [6] where the now high-
dimensional range space is traversed. Another approach by Edelsbrun-
ner and Harer is Jacobi sets [5] which work with the intersection and
restriction of level sets and are based on the folding of smooth map-
pings [21]. A general disadvantage of Jacobi sets is that their appli-
cability is limited to the case of k ≤ d functions over a d-dimensional
domain. Inspired by mathematical work on optimization problems of
Stadler and Flamm [16], Pareto sets as a tool for the structural vi-
sualization of multivariate data were introduced by Huettenberger et
al. [10]. They are defined for an arbitrary number of functions.

Schneider et al. proposed a comparison through normalized spatial
overlap of the largest contours, sets of maximal contours containing

only one critical point each, from the separate functions [14]. Schnei-
der et al. receive a weighted graph to which they apply graph cluster-
ing. This however does not typically result in data simplification or
decomposition of the domain.

Joint contour nets [1] make use of contour lines to discretize the
domain into slabs, which are regions with constant scalar values. Slab
adjacency is captured in a graph which provides a useful visualization.
As outlined by Carr and Duke in their paper, joint contour nets can
implicitly be simplified through the coarseness of the quantized data
on which is used to construct the net. So far, this is the only known
stategy for simplifying joint contour nets. However, this approach is
global and does not admit the simplification of local structures.

For multiple vector fields, Morse decomposition is proposed by
Szymczack [18] in connection with supertransition graphs. Here,
a given grid is refined into smaller subgrids, each represented by a
node. Any vector inducing movement from one subgrid to another is
recorded as an edge in the graph. Again, the simplicity of the graph can
be controlled through the refinement of the subgrids. While this can
be applied to almost any problem, a coarser grid might not represent
important topological information. A simplification through removal
or merge of unimportant information would therefore be desirable.

An approach by Tricoche et al. [20] for single vector fields that
also works for multivariate data is to identify critical points in each
function and then cluster them in the common domain to reduce the
structural complexity. The clustering is nonetheless based on geomet-
ric distances between the points and not on any topological structure.

However, so far only limited results have been discussed toward
the simplification of multivariate structural visualization. A promising
method is the simplification of Jacobi sets through a local difference
measure, described by Suthambhara and Natarajan [17] for two func-
tions f and g on a 2-manifold embedded in R3. Their measure is based
on ∇ f (x)×∇g(x) to describe the similarity between the two functions.
Though, it might be possible to expand this measure to multiple func-
tions, the limitation for Jacobi sets still exists, namely k ≤ d.

3 PARETO SETS

In the following, we recapitulate briefly the concepts underlying the
Pareto set visualization approach. We largely follow Huettenberger
et al. [10], who extended the ideas from the work of Stadler and
Flamm [16] to the piecewise linear, simplicial setting.

Let S be a d-dimensional simplical complex S ⊂ R
d , d > 0, and

f : S �→ R
k, k > 0, a multivariate function such that f = ( f1, . . . , fk) is

given at each vertex and extended to S by barycentric interpolation.

To compare two points x and y in S, a partial ordering is defined in
such a way that x (weakly) dominates y (denoted x � y) if fi(x)≥ fi(y)
for all i= 1, . . . ,k. Furthermore, x strictly dominates y (written x≻ y) if
x � y and there is at least one index i such that fi(x)> fi(y). If either
x � y or y � x holds, the points x and y are called comparable, and
incomparable otherwise. Intuitively, comparability states that, when
changing from x to y, all functions fi behave similar – they all either
increase or all decrease.

This gives rise to a definition of extremal points of f using this
dominance relation: a point x is called a Pareto optimum if there exists
an open neighborhood U(x) with x ∈U(x) such that all y ∈U(x)\{x}
are incomparable. x is a Pareto minimum if all points y∈U(x)\{x} are

g(x)f(x)

Pareto maximum Pareto maximum

ascending set ascending setPareto-optimal region

Fig. 2. Pareto set for two 1D functions.
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Fig. 3. Illustration of Pareto extrema and regular points in linearly inter-
polated simplices. (a) Dominated and dominating points w.r.t. x in σ are
colored green and red, respectively. (b) For x on an edge, both adjacent
simplicies are to be considered. Here, x is Pareto maximal; the same
holds for every point x′ on the edge ν . (c) x has both dominating and
dominated points and is thus regular; the same is true for every x′ ∈ ν .
(d) A Pareto-minimal vertex.

either incomparable or weakly dominating and x is a Pareto maximum
if those comparable points are all weakly dominated by x.

Pareto optima, Pareto minima, and Pareto maxima are collectively
called Pareto extrema while all other points are considered regular.
The definitions are illustrated for k = 2 functions in Fig. 2. The set of
all Pareto extrema is denoted as the Pareto set P( f ) of f .

Note that in a flat region, an open neighborhood U for which f (x) =
f (y) for all x,y ∈ U holds, every point is Pareto maximal and also
Pareto minimal. This does not provide a conflict with our definitions
or the results in the rest of the paper. We, nevertheless, assume in the
following all functions to be free of flat regions.

Additionally, Huettenberger et al. defined the local ascending sets
for x ∈ intσ as

H+
σ (x) :=

k⋂

i=1

{ y ∈ σ | fi(x)≤ fi(y) }.

And analogously, the local descending sets H−
σ (x).

For the special case that x ∈ σ lies on a face of σ we refer to the
illustrations in Fig. 3 and to the previous work [10] for further details.
In this case σ needs to be extended to a set of simplices. However, for
the sake of simplicity, we refrain from additional notation.

For the remainder of this work, we denote the set of connected com-
ponents over P( f ) with E( f ).

4 REACHABILITY GRAPH AND SIMPLIFICATION (RGS)

To simplify multivariate data, we apply an idea similar, but not equiv-
alent, to contour trees as constructed by Chiang et al. [3] for univariate
scenarios. We extend the ascending and descending sets from sim-
plices to domain-wide connections between Pareto extrema. This re-
sults in a global structure, visualized through a graph showing the re-
lations between the elements of E( f ). We discuss the simplification
operations for this graph and how those operations are translated to ac-
tual modifications to the data. To conclude this simplification idea we
define a suitable criterion to find a good sequence of graph operations.

Ascending and Descending Sets As a reminder, for a (univari-
ate) scalar field s : S �→ R over the simplicial complex S, prior work
usually aimed for a decomposition of the data into regions of common
behavior. Each regular point x ∈ S can be associated with a set of crit-
ical points, local minima, maxima, and saddles of s. The graph-based

visualization of the decomposition provides an abstract view on the
data and supports its simplification.

We combine this decomposition idea with the Barrier tree method
introduced by Stadler and Flamm [16] to obtain a global structure of a
multivariate field and use it as base for the simplification. We therefore
extend Stadler and Flamm’s definition, given for graphs, to piecewise-
linear data to define reachability between Pareto extrema.

Let now f : S �→ R
d and x,y ∈ S be two points with x ≻ y. We

say that x reaches y, denoted with x � y, if there is a continuous path
p : [0,1] �→ S such that p(0) = x, p(1) = y, and p(i) ≻ p( j) for 0 ≤
i < j ≤ 1. Note that this definition excludes x � x. We further define
a global ascending set for x by

H+(x) := { y ∈ S | x � y }

and analogously the global descending set H−(x).
Note that, if x is regular, H+(x) contains at least one Pareto maximal

point, however in general it contains subsets of the Pareto extrema in
E( f ). Hence, we use the terminology that x reaches or is reached
by a component Y ∈ E( f ) if and only if x � y or y � x for some
y ∈ Y , respectively. We usually have a proper subset relation since
a regular point cannot reach or be reached by a Pareto optimum. To
see this, assume for a contradiction that x reaches a Pareto optimum
y and, without loss of generality, let x ≻ y, then a path p exists such
that x = p(0)≻ p(1) = y but also p(1−ε)≻ p(1) for every 1 > ε > 0.
Hence for every sufficiently small neighborhood around y we find a
z = p(1− ε) such that z is inside the neighborhood and comparable
with y. This is a contradiction to y is Pareto optimal.

We extend this nomenclature from points to connected components
S ∈ E( f ) of the Pareto set and define H+(S) as the union of all H+(x)
for all x ∈ S. If furthermore for two components S,T ∈ E( f ), H+(S)∩
T �= /0 is true, we extend the above terminology and write S � T .

Each point x which is not a Pareto optimum is associated with at
least one element of E( f ) which reaches or is reached by x. Pareto op-
tima on the other hand do not have comparable points in their vicinity,
therefore no continuous path can start from or end at them. Let

A(x) := {S ∈ E( f ) | x � S} and

D(x) := {S ∈ E( f ) | S � x},

then we define the equivalence relation

x ∼ y ⇐⇒ A(x) = A(y) and D(x) = D(y). (1)

Note that all Pareto optima are equivalent, since A(x) = D(x) = /0;
for Pareto maxima A(x) = /0 holds, while for Pareto minima D(x) = /0
holds. Of further interest are points for which A(x)∩D(x) �= /0, i.e.
points that indicate paths from some elements in E( f ) to itself, a loop.
Specifically, when A(x)=D(x) only contains a single element of E( f ),

R1 R5R3

R2

R4

(a)

B

R2

R4

R1 R5R3

(b)

Fig. 4. An example configuration of Pareto extrema illustrating the
reachability graph, the ascending and descending sets of the connected
component R1 (shaded red and green), as well as the descending sets
of R2 (hatched).
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this indicates an isolated region inside the data which is only reached
by this element, for example, when a region of regular points is com-
pletely enclosed by Pareto extrema.

The connected components of the equivalence classes based on
those sets provide a decomposition of the domain S. As illustration,
Fig. 8(c) shows a data set with four functions over a 2-dimensional do-
main with the Pareto optima, maxima and minima, colored in yellow,
green, and red, respectively. For each connected component, ascend-
ing and descending sets are uniquely color coded and transparently
overlaid, illustrating the separate equivalence classes.

As you can see in Fig. 8(c) and 1(c) the decomposition is very con-
fusing. Hence, analogously to contour trees [3], we aim to create an
abstract view on the decomposition through a graph-based approach.

Reachability Graph Given the global ascending and descending
sets for each connected component in P( f ) we construct a reachability
graph. The graph contains a directed edge from R1 to R2, if and only
if R1 reaches R2. Hence, the edge represents the set of all points x ∈ S

with R1 ∈ D(x) and R2 ∈ A(x).
Fig. 4 sketches a scenario with four functions, each with a univari-

ate maximum in R2,R4, a minimum in R3,R4, and a saddle in R1. The
ascending and descending sets of R1 are colored in red and green, the
descending set for R2 is hatched to indicate reachability. The second
image shows the reachability graph for this scenario. In later sections,
we visually hide edges that are already given transitively, like for ex-
ample the edge (R5,R2), to clean up the diagram and provide more
comprehensible illustrations. Note however that reachability among
the connected components is not transitive and we applied this ap-
proach in later diagrams only for visual purpose. Our simplification
methods consider all edges including those hidden in the visualization.

So far we are able to classify points as Pareto maximal, Pareto min-
imal, and Pareto optimal while the elements in E( f ) can only be de-
noted as Pareto extrema since they typically consist of a mix of these.

Also note that loops in the graph are possible. Some are based
on numerical errors due to the abstracted view of simplical com-
plexes but not all. For a simple example consider the input data
as presented in Fig. 5, a ring of four vertices {v1,v2,v3,v4} con-
nected by edges (v1,v2),(v2,v3),(v3,v4), and (v4,v1). The function
values of two functions are printed directly on the vertices while all
other points along the edges are linearly interpolated. f (v1) = (1,1),
f (v2) = (2,2), f (v3) = (3,3), and f (v4) = (0,4). Note that v1 and
v4, and also v2 and v4 are incomparable such that these vertices and
all points included in the two edges between them are Pareto extremal
and form a connected component in P( f ). However, v1 reaches v3 via
a path over v2 such that the resulting reachability graph contains only
one node and a loop to itself.

As an aside, note that an edge (g,h) in the reachability graph im-
plies that the connected component G reaches H, i.e. that CG,H = {x ∈

V1

V2

V3

V4

3

3

0

4

2

2

1

1

Fig. 5. A simple example bivariate data set with four vertices and four
edges. Vertex v1 is a Pareto minimum, colored green, v3 is Pareto max-
imal, colored red, and yellow colored vertex v4 and adjacent edges are
Pareto optimal. v1,v3, and v4 and all points along the mentioned edges
build on connected component S, i.e. one element in E( f ). Note that this
component reaches itself reaches itself via the ascending path along the
edges (v1,v2) and (v2,v3) which results in a loop.

S | G ∈ D(x) and H ∈ A(x)} �= /0 but it is possible that this set con-
sists of multiple connected components in CG,H . Hence, while not in
the focus of this paper, a multigraph with multiple edges between the
nodes might be a more suited visualization. This and other aspects,
like for example a good placement of the edges according to CG,H is a
possible topic of future work while for the simplification approach in
this paper the graph as presented above is sufficient.

Graph Simplification Given the reachability graph, there are two
types of possible operations that yield simplification of the graph and
are therefore suitable to simplify the structure of E( f ). All other op-
erations to a graph structure can be done through a sequence of these
two or their reverse actions.

Merge two adjacent nodes into a new one, ”which inherits the old
nodes’ edges/neighbors.

Purge a node and remove it and every adjacent edge from the graph.

In detail, let G = (V,E) be a directed graph with nodes V and
edges E ⊆ V ×V . To merge a,b ∈ V into some c �∈ V , we create
the new graph G′ = (V ′,E ′) with V ′ = {c} ∩V \ {a,b} and E ′ =
E|a←c,b←c \ {(a,b),(b,a)}. The formula E|a←c,b←c \ {(a,b),(b,a)}
means we replace every appearance of a or b in the set of edges E
with c and remove every loop we might create through this renaming.

To purge a ∈ V , we would create the new graph G = (V ′,E ′) with
V ′ = V \ {a} and E ′ = {(x,y) ∈ E | x,y �= a}. However, the removal
of any node with more than one adjacent edge can result in a discon-
nected graph, which implies disconnected data. This is something we
have to avoid in our simplification approaches. The only allowed purge
is the removal of a leaf which is topologically equivalent to a merge
operation of the leaf and its adjacent node. Hence, for our graph sim-
plification approach, we only need to discuss the merge of nodes.

Interpretation A merge operation in the reachability graph can
have different interpretations in terms of how the function f is changed
such that the new reachability graph is isomorphic to the previous one
after the merge operation. For the contour tree in the univariate case
there are several ways as, for example, presented by Tierny and Pas-
cucci [19]. To provide a broad overview, we present three approaches
to change f which result in a merge in the reachability graph. Note
that more efficient methods are possible but not in the scope of this
overview.

Given an edge (R1,R2) connecting two connected components of
P( f ) R1 and R2, either R1 or R2 can be removed, or these components
are merged through a connecting region of Pareto extrema. Fig. 6 illus-
trates the changes to f that are equivalent to a merge in the correspond-
ing reachability graph. Assume that R1 and R2 are elements in E( f )
with the corresponding nodes R1 and R2 and an edge (R1,R2). The
hatched red and green areas are sections of the ascending and descend-
ing set of R1, the unhatched are those of R2. The blue encircled region
describes the equivalence class of regular point H+(R1)∩H−(R2).
It contains all ascending paths that start from a point in R1 and end
somewhere in R2. To merge the nodes R1 and R2, we either connect
R1 and R2 by Pareto extrema or replace either R1 or R2 with regular
points. In either case, we are not allowed to create any more connected
components in E( f ) or loops in the reachability graph. Otherwise, the
changes to f do not correspond to the merge operation in the reacha-
bility graph.

Fig. 6(b) illustrates the removal of R2. It shows the ascending and
descending sets of R1. Note how all paths from or to R2 are now re-
connected to R1 without creating circular paths or new Pareto extrema.

The functions are modified in such a way that all function values of
the points in R2 are iteratively moved towards R1. Fig. 6(c) illustrates
the idea behind this pushing analogy on a one-dimensional example
with two functions (orange and blue) and two Pareto extrema with the
same color scheme as in the other images. The function values in
the neighborhood of these moved points are interpolated to create the
topological behavior as illustrated in Fig. 6(b).

The second option, removal of R1 to merge (R1,R2) in the reach-
ability graph, is symmetric to this illustration. However, these two
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options are not able to handle loops, i.e. when R1 = R2. Because the
removal results in regular points that do not reach Pareto maxima or
Pareto minima. This is a contradiction to our above observation.

Hence, for the third option, i.e. connecting R1 and R2 through addi-
tional Pareto extrema, we modify the functions inside the blue circled
area in Fig. 6(a). This area contains all ascending paths from any point
of R1 to some point of R2. While a single line of Pareto extrema from
some point in R1 to another in R2 also connects these components, we
are forced to change all points in the encircled regions since we oth-
erwise create loops from this connected component R1/R2 to itself.
This is however not topologically equivalent to the merge of (R1,R2).
Hence, all points inside the blue circled area are changed into Pareto
extrema through modification of f .

While the complete algorithmic explanation to this approach is out-
side the scope of this paper, consider the above example with four ver-
tices connected in a circle as a simple and compact illustration. The
vertices v1 reach v3 via a path through v2. We choose a point along this
path, here v2, and change at least two of its function values, here f0 and
f1. The first value is decreased below min{ f0(v1), f0(v3)} and the sec-
ond value is increase above max{ f1(v1), f1(v3)}, e.g. f ′(v2) = (0,4).
The function values for v1 and v3 remain unchanged while all other
points along the path are linearly interpolated. Note that all points
along the path become Pareto extremal.

We have in summary two important key stones for the application of
this idea to our example in Fig. 6(a). First, given the area that contains
all ascending paths from one element of E( f ) to the other – the blue
circled area in Fig. 6(a) – all function values at the boundary of that
area and outside are not changed. Second, at least two functions are
modified in such a way that their gradient vectors are inverted to each
other for all points inside that area.

Operation Sequence The last step towards a viable simplifica-
tion method is to determine a suitable order of merge operations such
that simplification addresses small-scale regions (e.g. resulting from
noise) with preference.

In the previous paragraph we designed the merge of (a,b) through
removal of R2, removal of R1, or through an additional connection
between R1 and R2. In the first option, we modified only a very small
part of H+(R1)∩H−(R2) and all points of R2, in the second option
only some points in H+(R1)∩H−(R2) and all of R1, and for the new
connection we required to change all points in H+(R1)∩H−(R2).

To estimate the amount of change to f required to transform a reg-
ular point x into a Pareto optimum, we measure the dominated and/or
dominating points with respect to x restricted to a small neighborhood
of x, i.e. H+

σ (x)∪H−
σ (x) as defined in Section 3, σ being the sim-

plex containing x. If those points become incomparable to x by small
changes to f , x becomes Pareto optimal.

R2

R1

(a)

R1

(b) (c)

Fig. 6. Illustration of the functional change if an edge corresponding to
a connection between R1 and R2 is merged. (a) and (b) show the result
of the changes to the ascending and descending sets of R1 while (c)
provides implementational ideas through a 1D example.

As a reminder, since f is assumed to be linear in σ , H+
σ (x) is an

intersection of k convex half-spaces which are provided through the
hyperplanes { y ∈ σ | fi(x) = fi(y) } for 1 ≤ i ≤ k and σ .

Hence, if x is not Pareto maximal, H+
σ (x) \ {x} �= /0 is a convex

polyhedron and the cone at x has an opening angle which reflects the
local quantity of dominated points invariant to the size of σ and the
actual scalar values from f . We denote this angle with α+

σ (x) ∈ [0,π].
If x lies on a face of some simplex, σ becomes a set of simplices
to which x is adjacent and α+

σ (x) is calculated through the sum of
opening angle in those simplices. Again, for the sake of simplicity, we
refrain from additional notation.

We estimate the amount of alteration to f required to transform
all points in R = H+(R1) ∩ H−(R2) into Pareto extrema through∫

y∈R α+
σy

+α−
σy

dAy. However, note that the ascending and descend-

ing set for x are point-symmetric at x, therefore α+
σ (x) = α−

σ (x) holds.
Hence,

∫
y∈R α+

σy
dAy equivalently reflects the alteration to f except for

a scalar factor.

To change a Pareto optimum x into a regular point, an optimiza-
tion problem must be solved for each point, which is only practical
for small problem instances. An obvious upper bound with the same
approach as α+

σ is to measure all incomparable points with respect to
x restricted to a small neighborhood to x. For Pareto optima, this is
obviously the complete neighborhood, therefore an upper bound.

Hence, we augment the reachability graph with the following
weights such that we receive a weighted graph G = (V,E,w). For
each edge (S,T ) ∈ E, corresponding to components S,T ⊆ E( f ), we
define w(s, t) =

∫
y∈R α+

σy
dAy+min{|S|, |T |} with R⊆H+(S)∩H−(T )

as described above.

With this definition, w(R1,R2) is an estimate of the work needed to
remove the component R2 in the previous image. Furthermore, as the
node R2 is removed, all incoming and outgoing edges of R2 become
incoming and outgoing edges of R1. To adjust the weights without a
recalculation of the ascending and descending sets, we add w(R1,R2)
to every relocated edge weight and sum the weights of multiple edges,
if those appear. The weights measure how much the functions at a
point have to be changed with respect to the halfplanes to turn a regu-
lar point into a Pareto extremum. Note that these weights remain con-
servative estimations since in our piecewise linear setting the change
applied to one point also changes all other points of the same simplex.

We apply a greedy algorithm to find a sequence of edge merges un-
til a given threshold is reached. In particular, the algorithm chooses
the edge with minimal weight, merges the two adjacent nodes as il-
lustrated before by merging one of the connected components into the
other. Then the algorithm recomputes the remaining weights and re-
peats the procedure until no edge with a weight smaller than the given
threshold can be found.

Note that errors in the triangulation are only local, i.e. they usually
affect only single simplices and inside those only slightly such that the
opening angle α+

σ (x) is rather small. Hence, loops, created through
these triangulation errors have a small weight and are chosen first by
the greedy algorithm to be removed via a merge of the adjacent node
with itself.

Implementation Our current implementation of computing the
angle is limited to two dimensional domains, for which we assume
a simplicial complex (triangulated grid) with scalar values given at the
vertices. We use the same algorithm as [10] to identify the set of Pareto
extrema E( f ).

We then compute for each component the ascending and descend-
ing set using the following algorithm. We begin at the Pareto min-
ima, respectively Pareto maxima, of the components and propagate a
front along the ascending, respectively descending, paths, extending it
through individual triangles.

If the front encounters a Pareto extremum and a corresponding edge
is not already in the reachability graph, such an edge is added. This is
done until every section of the front has stopped at a Pareto extremum.
In each triangle, the corresponding section of the global ascending or
descending, respectively, set is saved such that in a second step, the
weights for each edge can be calculated in each triangle individually
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Fig. 7. Illustration of the Merge and Purge graph operations similar to
Suthambhara and Natarajan [17].

and then be accumulated. Note that the sections of the ascending or
descending sets, respectively, in the triangles are defined by at most
six points, two along each edge of the triangle; in other words, in the
worst case, each triangle is visited by the front three times. This makes
the calculation of intersections straightforward.

Let c := |E( f )| be the number of connected components. As the

reachability graph G has at most c2 edges, the calculation of the as-
cending and descending sets and their intersection can be broken down
to m linear problems in each of n triangles such that we obtain a worst-
case running time in O(c2mn). Note that this is a pessimistic estimate,

as G has typically fewer than c2 edges.

5 SIMPLIFICATION BASED ON THE COMPARISON MEASURE

CONTOUR TREE (CTS)

Simplification based on the reachability graph has a major drawback.
If the number of elements E( f ) is relatively large, the simplification
algorithm discussed in the previous section is costly, since the ascend-
ing and descending sets must be calculated for every component.

The edge weight w(S,T ), based on the opening angle α+
σ (x) can

however be used to modify a simplification approach presented by
Suthambhara and Natarajan [17] for the Jacobi set of two scalar func-
tions such that it works for the Pareto set for arbitrarily many func-
tions.

Suthambhara and Natarajan calculate a local comparison measure
that reflects local topological difference between the functions at each
point x ∈ S. This measure yields a scalar field f ′ from which a
contour tree [2] is extracted. Each node v ∈ V corresponds to con-
nected components in the level sets: {x ∈ S | f ′(x) = cv} for some
value cv. Each edge (a,b) corresponds to a connected region in
{x ∈ S | ca ≤ f ′(x) ≤ cb} such that the level sets corresponding to
a and b are subsets. Suthambhara and Natarajan then proved that the
hypervolume of this connected region is a conservative estimate of the
change in relationship between the two functions if specific graph op-
erations are applied to the contour tree.

We therefore extend the approach of [17] by introducing a similar
local comparison measure with the same interpretation as in the work
of Suthambhara and Natarajan. Here, we aim to produce a second
method for simplification of Pareto sets with reduced computational
effort, compare both approaches, and provide a deeper understanding
of the connection between Jacobi and Pareto sets.

Comparison Measure Suthambhara and Natarajan’s compari-
son measure is defined for every point in the domain. It is a scalar
invariant value that is also invariant to specific triangulations of the
domain, i.e. the size of the simplices. It reflects local topological dif-
ference between the underlying functions.

In the context of the Pareto set approach, strong difference between
the functions results in incomparable points, reducing the number of
comparable ones and produces Pareto optima.

Hence, we suggest to replace the measure from [17] with 2 · (π −
α+

σ (x)), the function from the previous section which reflects an upper
bound for the difference between the separate functions in f .

As discussed before, α+
σ is not defined for every point in S since

σ is ambiguous for some x, especially vertices. Following [17], we
average α at the vertices based on the values in the adjacent simplices.

Through linear interpolation using these average values at the vertices,
we receive a continuous, piecewise linear scalar field κ f for S.

Note that for the Pareto optimal points for which no cone exists, κ f

equals π , which directly implies that Pareto optima are maximal in κ f .
We can easily enforce that every element in E( f ) contains at least one
Pareto optimum by adding new functions.

Assume that an element in E( f ) does not contain a Pareto opti-
mum, therefore only contains Pareto maxima and/or Pareto minima.
For such a Pareto maximum x with H−

σ (x) �= {x}, we add d new func-
tions to f . Every new function is equivalent to f0 except for a suffi-
ciently small neighborhood U(x)∩H−

σ (x) around x. Inside that region,
the positions with the function values f0(x) in the new functions are
moved by a sufficiently small ε such that these positions form a small
d-simplex. The other values for the new functions in U(x)∩H−

σ (x)
are set through linear interpolation. Note that for every point inside
that simplex and for every direction from that point we have one of
the new function for which the function value increases and another
new functions for which it decreases. Hence every point inside that
simplex is surrounded by incomparable points and is therefore Pareto
extremal.

However, since x is in the connected component and the new Pareto
extrema are all adjacent to x, the new functions do not increase |E( f )|
and at most enlarge the component including x. Nor do they change
κ f drastically and only inside the small neighborhood U(x).

Hence, we can assume that every element of E( f ) contains at least
one maximum with respect to κ f . Furthermore, since all Pareto optima
have π as value of κ f , each element in E( f ) can be associated with a
unique connected component in the level set {x ∈ S | κ f (x) = π}.

Note that since the new functions are almost equal to f0 they can
be neglected for the calculation of κ f except for small neighborhoods
around some Pareto optima where those function values actually differ
from f0. Thus almost no extra computational effort is created through
those new functions.

Contour Tree Given κ f , we follow Suthambhara and Natarajan
to construct and simplify a contour tree. For the purpose of illustra-
tion, Fig. 7 presents the graph operations provided in [17]. The larger
blue nodes are associated with connected components in the Jacobi
set. Note the similarity of the Merge and Purge operations to the graph
simplification applied in Section 4.

Also note that, under the above assumption, all connected compo-
nents are associated with leafs in the contour tree such that a merge
tree is sufficient for simplification purposes and simpler to compute.
Using this insight, as well as the fact that all nodes of interest, i.e.
those associated elements of E( f ), are maxima in the merge tree, we
employ a simplified version of the greedy algorithm used in [17]. This
algorithm sequentially chooses the graph operation with minimal cost,
applies this operation to recalculate the weights and repeats this until
the minimal cost is above a given threshold or until a number of op-
erations is reached. However, we adopt the basic idea to merge edges
with smallest weight first, as is also done in the previous section. Here,
for each edge the integral of κ f over the area swept by the level sets
corresponding to an edge in the merge tree are taken as edge weights.

6 EXAMPLES

We applied the two strategies, reachability graph simplification (RGS,
cf. Section 5) and simplification based on the contour tree of κ f (CTS,
Section 4) to two data sets to provide a proof-of-concept and an ini-
tial comparison between these methods. Computation times for the
results shown in the following are in the range of seconds to minutes
depending on the size of E( f ), as discussed in Section 4.

Synthetic Data The first data set is a synthetic example. We

select a 4 × 2 set of positions Ai = {ai, j ∈ [0,1]d |0 ≤ j ≤ 4} and

Bi = {bi, j ∈ [0,1]d |0 ≤ j ≤ 4} for 1 ≤ i ≤ 4 with the restriction that
0 < |as, j −at, j|< 0.1 and 0 < |bs, j −bt, j|< 0.1 for 1 ≤ s, t, j ≤ 4. The
functions fi are defined as

fi(x) :=
4

∑
j=0

e−|ai, j−x|·2 −
4

∑
j=0

e−|bi, j−x|·2,
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(a) component contours (b) reachability graph (c) reachability decomposition

Fig. 8. An illustration of the reachability graph over a synthetic data set with four scalar fields. (a) depicts the contours of each of the four scalar
component functions. The reachability graph given in (b) provides a decomposition of the domain shown in (c).

(a) original data (1.5%-noise, |E( f )|= 210) (b) RGS (t = 100) (c) RGS (t = 199)

(d) original data (1.5%-noise, |E( f )|= 210) (e) CTS (t = 110) (f) CTS (t = 200)

Fig. 9. A comparison of the two Pareto set simplification techniques over synthetic data with 1.5% random noise. The top images (a) and (c) shows
reachability-graph (RGS) simplification for two increasing thresholds. The bottom row illustrates the comparison measure contour tree simplification
(CTS) for two increasing thresholds (images (e) and (f)). The first images (a) and (d) present the unsimplified data for the methods.

and combined to yield f (x) = ( f1(x), . . . , f4(x)). We calculate f at
the vertices of a regularly triangulated grid as input to our algorithms.
Fig. 8 provides an overview of this example. Each function has a max-
imum in each of the four connected components of P( f ) in the corners,

a minimum in each of the connected components in the top and bot-
tom middle, and a saddle in each of the three connected components
in the middle row. Fig. 8(a) shows contour lines for the fi, color coded
in blue, red, green and black, to illustrate their univariate topologies.
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(a) original data (0.04%-noise, |E( f )|= 264) (b) RGS (t = 150) (c) RGS (t = 221)

(d) original data (0.04%-noise, |E( f )|= 264) (e) CTS (t = 159) (f) CTS (t = 226)

Fig. 10. A comparison of the two Pareto set simplification techniques over synthetic data with 0.04% random noise. The top images (b) and
(c) shows reachability-graph simplification (RGS) for two increasing thresholds. The bottom row illustrates the comparison measure contour tree
simplification (CTS) for two increasing thresholds (images (e) and (f)). The unsimplified data is presented in the images (a), respectively (d).

Fig. 8(b) shows the same data and its reachability graph, together with
the Pareto sets of f consisting of minima (green), maxima (red), and
optima (yellow). Nodes are placed in the center of gravity of the cor-
responding component. Note that loops are not shown, and edges that
are already given transitively are removed to simplify visual under-
standing of this example. Fig. 8(c) presents the reachability decom-
position based on color coding ascending and descending sets. This
depiction also contains the reachability graph from the previous im-
age, but is more difficult to comprehend.

This synthetic data has a relatively simple structure. To obtain in-
creased structural richness as a testbed for simplification, we added
random noise. At each vertex and for each component, we changed
the function values by a uniform random value from the interval
[−p · δ , p · δ ], where δ denotes the range of the corresponding com-
ponent function and p << 1.

Fig. 9(a) and 9(d) show the same synthetic data, both with addi-
tional 1.5% noise. Due to the relative flatness of f , even such a low
noise level already introduces significant changes to the structure and
breaks apart the three connected components in the middle into sev-
eral smaller components. The six connected components in the top
and bottom row remain roughly intact however. Ideally, the simplifi-
cation procedure would retain these components and remove all other
newly introduced components.

Fig. 9(b) and 9(c), and 9(e) and 9(f) show the result of the two ap-
proaches after a number of simplification steps. In all four images,
the value t indicates the number of removed, respectively merged, ele-
ments of E( f ). In both approaches, we remove connected components

that correspond to purged or merged nodes in the reachability graph or
the contour tree of κ f , respectively. Hence, neither the form of the
components nor the contour lines change among Fig. 9(a) to 9(c) and
9(d) to 9(f), respectively.

Note that both methods are able to remove most of the spurious
noise and keep the six connected components in the top and bottom
row we identified in the noise-free data in Fi. 8. CTS however re-
moved almost all of the noise-based components too, among them
those which we could associate with the three connected compoents
in the middle row from Fig. 8.

For the RGS approach, we observe a range of simplification steps
for which the desired elements of E( f ) remain. Still, an exact recon-
struction of the original synthetic data, i.e. topological equality in the
reachability graph, could not be achieved.

An explanation for the results is two-folded. First, the induced noise
results only in small, local maxima in κ f . Hence, the Pareto extrema
based on those noise correspond to only low-weighted nodes which are
all removed very early in the CTS method. Since we always remove
leafs of the contour tree in this method the remaining nodes do not
gain weight very fast such that in later simplification steps also Pareto
sets which we would consider important are removed. For the RGS
approach, on the other hand, the ascending and descending sets of
merged Pareto extrema are changed and thereby also all edge weights
adjacent to the corresponding nodes in the reachability graph. Hence,
in a cluster of noise-based Pareto extrema, like those we see in the
middle row of Fig. 8, it is more likely that Pareto extrema remain in
the data under RGS than under CTS.
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Can Data We have the Can data set as a real-world example
which results from a CFD simulation of flow in a fluid-filled cylin-
der with a rotating lid. Prior work with a similar data set was done
by Huettenberger et al. [10]. The data set is a simple example of flow
simulation with the aim to identify vortices using several vortex cri-
teria, more specifically, Q-criterion, λ2, vorticity, and pressure. See,
for example, Jeong and Hussain [11] for further details on those crite-
ria. Such simulations are often found in aircraft or car design where
the localization of air turbulences and vortices are essential for a fuel
efficient design.

All criteria indicate vortices via extremality, however disagree on
the exact location of those vortices. Therefore, the Pareto set provides
extremal regions, elements of E( f ), on which all criteria agree. The
criteria mentioned above are calculated from the simulation data and
together form the multivariate scalar function f . The simplicial com-
plex that serves as input to both simplification schemes is generated as
a two-dimensional slice parallel to and containing the cylinder’s cen-
tral axis. As the flow is rotationally symmetric, this is sufficient to
identify meaningful structures. The images in Fig. 1(a) illustrate the
component scalar fields on the slice. The goal in this context is to vi-
sualize common topological behavior, agreement between the fields,
to identify vortices from multiple criteria simultaneously (cf. [10]).

As for the synthetic data, Fig. 1 illustrates the Pareto sets of f for
which Fig. 1(b) and 1(c) depict the reachability graph and decom-
position. Note how the number of reachability equivalence classes
increases dramatically as the number of extrema regions |E( f )| in-
creases. Pareto maximal and minimal components, as classified by the
reachability graph, are of main interest since they indicate regions in
which all considered criteria suggest vortices to be located. All criteria
agree that towards those components their value increase, respectively
decrease, and thereby agree on extremality of this region.

Edges in the graph furthermore provide a domain expert with in-
formation how those regions are connected, even interact with each
other. The graph aids the experts to understand global structure and
directs them to locations, the Pareto extrema, where a detailed look is
necessary. Specifically, an edge represents a set of paths between two
connected components on which all criteria agree with respect to the
ascending and descending direction, respectively.

It can be observed that this data set is relatively clean and contains
little structure. Again, we add noise to gauge the effect of simplifi-
cation. Fig. 10(a) and 10(d) present the Pareto set for modified data
with random 0.04-noise. Note how such small degree of noise already
produces a large amount of separate extremal regions.

Fig. 10(b) and 10(c) present the results of RGS for two different
numbers of simplification steps, whereas Fig. 10(e) and (f) show the
outcome of the CTS method. The value t indicates the number of
removed, respectively merge, connected components of P( f ).

As with the previous, synthetic data, we notice that the contour
tree approach removes more components than necessary, while in the
reachability graph approach noise-based extremal regions remain.

7 CONCLUSION & FUTURE WORK

We presented two techniques for simplifying multivariate scalar data
based on structures gained through the calculation of the Pareto set.

The first technique is based on the reachability graph – a weighted
graph whose nodes represent connected components of Pareto ex-
trema. Connectivity is determined by the existence of paths along
which function values are strictly increasing or decreasing. Edge
weights estimate the local stability as measured by the opening angle
of the space of incomparable points within a region. For two fields, this
measure is a normalized version of Suthambhara and Natarajan [17],
originally developed for Jacobi set simplification. However, our mea-
sure extends naturally to more than two fields and is furthermore re-
silient to scaling input field values, e.g. resulting from a change in
units. The simplification itself greedily merges or purges node pairs or
nodes, respectively, in the order of edge weights until a given threshold
is reached. The concept of reachability also lends itself to a decompo-
sition of the domain by defining an equivalence relation among regular
points from which the same sets of Pareto extrema can be reached.

The second simplification technique follows more closely along the
lines of Suthambhara and Natarajan [17] in that it computes the con-
tour tree of the stability field computed from the original multivari-
ate data and performs topological simplification on that contour tree.
Again we replaced the stability measure of Suthambhara and Natara-
jan by our opening angle measure to support more than two fields.

The results of a case-study-based qualitative comparison of both
methods revealed that both techniques managed to remove most of
the artificial noise that was introduced during our experiments, but
the contour-tree-based method removes more connected components
than necessary. The different results may be explained by observing
that the CTS essentially turns the multivariate problem into a univari-
ate problem using only local information at each point, whereas the
reachability graph considers the functions jointly within regions und
thus has more information at its disposal. Compared to the contour
tree technique, the reachability graph supports loops and can thereby
handle errors based on inconvenient triangulation. However, loops re-
main difficult to interpret, because they never arise in the univariate
setting. In addition, the contour tree technique was slightly faster, but,
it does not lend itself to a decomposition of the domain. However
since these observation are based on few cases we wish to strengthen
our findings by studying further examples in the future.

Both Suthabhara/Natarajan’s and our method currently lack precise
rules for the change to the input functions such that the simplified com-
binatorial structure (contour tree and reachability graph, respectively)
arises. Suthabhara and Natarajan point out that such a change may be
complex and computationally expensive since it must satisfy numer-
ous constraints on the local stability measure. We outlined the feasibil-
ity and three models of how to change the functions for our methods,
but the study of which model is generally feasible and optimal (e.g.
requires minimal changes to the input functions) may depend on the
actual application. We thus leave this study for future work.

Although we presented our work only for two-dimensional do-
mains, the computation and simplification of the combinatorial struc-
tures extend naturally to higher dimensions. While the combinatorial
stucture can always be shown via graph drawing, for more than two
dimensions the presentation of the domain decomposition and its rela-
tion to the combinatiorial structure become challenging. Future work
will therefore investigate display strategies for three-dimensional data
sets, as these are of primary interest in scienfic and engineering ap-
plications. For example, we might base multivariate transfer function
design for volume rendering on our combintorial structure in analogy
to Zhou and Takatsuka [22].

While in this paper our aim was to demonstrate the feasibility
of Pareto set simplification, a more in-depth evaluation is desirable.
Therefore, future work is underway to assess the benefits and draw-
backs of simplified Pareto sets over existing multifield visualization
methods. Prior work already hinted at the relation between Pareto
and Jacobi sets [10], in this paper we found that this similarity ex-
tends to topological simplification. We wish to further study those
relations; it has the immediate benefit of providing opportunities to
transfer research results for both structures and may shed more light
on general multifield analysis in the future. Similar benefits may arise
through a comparison with Morse-Smale complexes [8] and joint con-
tour nets [1], especially how the quantization of the fields’ values in-
teracts with the reachability relation. Because ascending and descend-
ing paths are quite unlike steepest ascent and descent the relation to
Morse-Smale complexes is not imminent. But Szymczak’s work [18]
on piecewise constant vector fields bears some algorithmic similarity
to the detection of Pareto sets and may provide a link between the two.
This similarity may prove fruitful for further reasearch.
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