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Figure 1: Painting generated by a single run of evolving ribbons.

ABSTRACT

We present an interactive algorithmic painting approach producing
organic flow-like representations. Our approach is inspired by na-
ture, in particular, the smooth patterns of flowing particles in liquid
and air but also the smooth organic shapes occurring in flora. The
algorithm for creating organic shapes follows mechanisms of flow
visualization. It is based on the random spread of guiding points
from a user-defined seeding position that grow to curves enclosing
ribbons. This spreading process is initialized and can be—to some
extent—influenced by the user. Rendering only requires the draw-
ing of partly transparent polygons. Different color maps and ren-
dering schemes are available to produce unique, non-deterministic
paintings.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation; I.3.4 [Computer Graph-
ics]: Graphics Utilities—Paint systems

1 INTRODUCTION

Organic shapes occurring in the flora have been an inspiration for
art in many fields including architecture, paintings, drawings, and
sculptures. In particular, curves and spirals are an inspiration for
manual (hand-crafted) pieces of art as well as algorithmic art. Be-
sides the organic shapes in nature, also the flow of air or liquids
is continuous and, when visualized using flow visualization tech-
niques, shows organic patterns and smooth curves. Organic shapes
that contain only gradual changes of direction are perceived as aes-
thetically pleasing, according to the biophilia hypothesis [31].

Manually drawing or constructing organic shapes, however, is
difficult. While experienced painters are to draw smooth contours
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by hand, it still remains a challenge to fill these with smooth color
gradients. Hence, computer support for creating these drawings is
helpful and would enable less experienced artists to create organic
drawings. One option is using existing flow simulations to produce
the shapes. Although such simulations are certainly able to gen-
erate visually fascinating and aesthetic curves, they are difficult to
control: simulation parameters only indirectly influence the vec-
tor fields and trajectories of particles. Moreover, simulations are
usually computationally expensive so that long delays disturb the
painting process.

To overcome these limitations, we present a drawing approach
that automatically creates flow-like shapes with smooth gradients,
but lets the artist control the flow more easily. The generation of
shapes is based on a simple algorithm that is easy to implement and
computationally inexpensive. Rendering only requires the drawing
of partly transparent polygons. This allows real-time interaction
and dynamic image creation similar to a usual digital painting soft-
ware. The approach transfers the aesthetics of flow visualization to
painting and therefore allows artists to easily create visualization-
like images.

Figure 2: Ribbons bounded by two curves that intersect at the seed-
ing point (on the very left) and two other locations. In the ribbon at
the bottom, the bounding curves are rendered in black.
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In particular, we provide a painting tool that generates smoothly
curved, overlapping ribbons that produce appealing visual patterns.
A ribbon can be understood as the area circumscribed by two curves
that are built up by two guiding points moving in two-dimensional
space (see Figure 2 for a single ribbon). To create smooth curves
and hence ribbons, we use an acceleration model to move and
spread the guiding points from their initial position and initial ve-
locity with respect to their acceleration and hence increasing ve-
locity. The painting process is partially controlled by the users:
The seeding point for the guiding points and hence ribbons is set
interactively using a mouse click. Moreover, they can drag the
guiding points behind the mouse position. Finally, rendering set-
tings, including different color maps or the explicit rendering of the
curves bounding the ribbons, can be set to produce different paint-
ing styles.

2 RELATED WORK

The paintings generated with our algorithm give the impression of
flowing liquids or gases. There are various flow visualization tech-
niques that visualize the flow described by a vector field. These in-
clude different techniques based on particle tracing such as stream-
lines, pathlines, streak lines, and timelines [15, 14, 19], which show
different properties of the two-dimensional vector field. For three-
dimensional vector fields, stream lines can be extended to stream
ribbons or stream surfaces. While the lines extracted from a static
two-dimensional vector field do not overlap or intersect each other,
in visualizations of dynamic flow [10, 11] overlap and intersec-
tions may occur. While the previously mentioned approaches were
mainly developed for data analysis, the real time, interactive fluid
simulation and vector visualization technique by Forbes et al. [9]
was developed for incorporation in media arts projects.

Besides the organic shapes occurring in flow visualization, many
more visual representations or pieces of art in general—inspired by
nature—include curves. This is not only true for hand drawings or
paintings but also for artworks created computationally as well as
for image filters. In algorithmic or generative art [4, 8, 17, 22, 24],
pieces of art, design, or architecture are generated computationally,
e.g., by exploring fractals [2, 8]. Often these contain smooth shapes
or curves, such as the Cortices by Henze [12], the flow art by Pa-
tel [1], or the Perlin Flow Ribbons by Mattox [18]. The screen-
saver map by Esch and Rogers [7], e.g., shows elliptical curves that
arise from polygonal folding. The particle tracing method “mag-
netic curves” by Xu and Mould [32] creates curves with constantly
changing curvature and uses these to generate tree-like drawings.
In contrast to their magnetic model, which is based on a constant
acceleration perpendicular to the direction of motion, our model
varies acceleration, which leads to random, non-deterministic ir-
regular curves. Also in the area of information visualization, curvy
representations including ribbons are used quite often, e.g., to visu-
alize the flow of groups or attributes over time [20, 23, 25]. Further,
spirals are applied to visualize serial periodic data [5, 28].

There are various approaches that transform an image into a
painting- or drawing-like representation using image filters, e.g.,
using curves [16, 29], or into a stained-glass version of that im-
age [21]. The line-drawing stylization approach by Wei and
Mould [29] is based on particle tracing that generates almost paral-
lel traces, i.e, the traces do not intersect. In contrast, in our paint-
ing approach interesting visual patterns occur because the paths of
guiding points do intersect. Other techniques use a tessellation ap-
proach [16, 21]. In our approach, tiles (areas framed by paths)
emerge by accident through intersecting paths. All these image fil-
tering approaches are automatic and do not require interaction by
the user besides for parameter adjustments. In contrast, we want
to provide a painting tool that allows the user to generate paintings
interactively.

Figure 3: Photography of a hanging, overlapping fly screen fabric in
front of a white wall under direct sun light.

There are several sketching and brushing approaches that are
based on user interaction, e.g., via mouse or digitial pen, where
sketch-based interfaces are mainly used to generate the intended
two-dimensional [27] or three-dimensional [13] geometric objects.
Our painting approach is, to some extent, similar to brushing ap-
proaches for digital painting, such as the three-dimensional brush
for pastels or oil paint [6] or wax crayons [26], where compared to
those brushes our approach generates coarser patterns that are not
suitable to draw detailed contours. In fact, our approach contains
more random features and cannot be controlled in the same way as
brushes. However, in particular the evolving random organic fea-
tures make the paintings generated with our approach aesthetic.

3 GENERATING RIBBONS

The aim of our painting tool is to generate flow-like organic shapes.
We draw random smoothly curved ribbons, which can be under-
stood as the area circumscribed by two curves. These ribbons are
not independent, but share the bounding curves with other ribbons,
which leads to overlap of those ribbons giving the impression of
irregularly folded, partially transparent fabric, like in the photogra-
phy shown in Figure 3. The generation of these curves is inspired
by flow, in particular, the paths of moving particles. In flow visu-
alization the movement and hence the paths depend on the under-
lying vector field and the seeding. In our approach, we also let the
particles move starting from their seeding position but—in contrast
to particle movement defined by vector fields—the movement it-
self is independent from their two-dimensional position. Instead of
allowing the particles to jump to random positions on the screen—
which would create jagged paths—we use an acceleration model
for a smooth spread of the particles, in the former referred to as
guiding points.

The ribbons evolve by connecting every two guiding points with
a line that moves together with the points, thereby dragging a tail
behind them. Figure 4 (a) illustrates the movement of guiding
points and the respective connecting lines by coloring them based
on the time evolved (the paths of the guiding points are shown in
black). By analogy to stretching fabric—where more light passes
through the fabric when stretched—the longer the distance between
two guiding points, the more transparent the line stretched between
them. This is illustrated in Figure 4 (b), where the connecting lines
are rendered in black with a transparency increasing with the length
of the line. This approach has already been used before, e.g., to vi-
sualize unsteady flow [30].

In this section, we first describe the movement of guiding points
based on our acceleration model and how this movement can be
controlled interactively. We further discuss the rendering algorithm
that generates the flow-like ribbons from the moving guiding points.
To demonstrate the visual variety of our approach, we finally ex-
plore different parameters of both algorithms.
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(a) (b)

Figure 4: Schematic illustration of the movement of guiding points
and the evolution of pairwise connecting lines with (a) color-coding
by time and (b) increasing transparency with lengths of the lines.

3.1 Moving Guiding Points

The key aspect of our method is the combination of interactive user-
based initialization of the guiding points and their random acceler-
ation based expansion across the screen. Agorithm 1 shows the
pseudo code that moves the guiding points randomly based on an
acceleration model. The algorithm takes the initial seeding posi-
tion −−→pinit = (xinit, yinit) for the points and the movement parameters
δ (velocity increment), κ (volatility), and n (number of guiding
points) as input. We use pixel as units for lengths; time is given by
the discrete frame numbers of the animation.

Algorithm 1 Moving guiding points

moveGuidingPoints(−−→pinit, δ , κ , n):
−−→pinit; // initial seeding position (x,y)
δ ; // velocity increment used to accelerate the movement
κ; // volatility of the change of acceleration
n; // number of guiding points

P; // set of guiding points
t; // current time
vscale := vscale0; // current velocity scale initialized with vscale0

P := initGuidingPoints(−−→pinit, n);

// Iterate over time:
while true do

t := t +1;
// Iterate over guiding points:
for all Pi ∈P do−→ai := changeAcceleration(Pi, κ);−→vi := changeVelocity(Pi, vscale);−→pi := move(Pi);
end for
render(P, t);
vscale := vscale +δ

end while

First, a set of n guiding points P = {P1,P2, . . . ,Pn} is initialized.
Each guiding point is a triple of vectors Pi = (−→pi ,

−→vi ,
−→ai ), where the

position is initially set to−→pi :=−−→pinit, the velocity to−→vi := (0,0), and

acceleration to −→ai := (0,0). The movement of guiding points P is
then simulated in discrete time steps with a time increment h = 1 as
part of an endless loop. At each point in time t, the acceleration and
velocity of every guiding point Pi is changed and the point is moved
based on the current velocity. First, the acceleration −→ai is adjusted
randomly using the subroutine changeAcceleration(Pi):

−→ai :=−→ai +κ

(
rx
ry

)
,

where rx and ry are random values between -1 and 1. The volatil-
ity parameter κ determines the degree of random influence on the
acceleration. Next, the velocity is updated using the subroutine
changeVelocity(Pi, vscale):

−→vi
′ :=−→vi +h−→ai and then −→vi :=

vscale

|−→vi ′|
−→vi
′.

Here, the temporary velocity −→vi
′ is first computed based on kine-

matics using Euler integration, then the new velocity −→vi is com-
puted by multiplying the temporary velocity by the current velocity
scale vscale and normalizing the result with |−→vi

′|. Finally, the current
position −→pi of the guiding point Pi is updated within the subroutine
move(Pi) based on the Euler method:

−→pi =
−→pi +h−→vi

After the transformation of each guiding point Pi, the current ve-
locity scale vscale is increased by the velocity increment δ . The
increase of the current velocity scale vscale together with the nor-
malization of the velocity by |−→vi

′| was added to the algorithm in
order to continuously increase the velocity of the movement with-
out letting the velocity become too large. The effective movement
of the points is slower, and hence the ribbons are more curved, near
the initialization point. In contrast, at later time steps the effective
movement is much quicker and hence the ribbons get less curvy,
allowing them to fade out. This change in curvature particularly
creates the floral impressions of the ribbons.

Although the algorithm simulates the movement endlessly, in
practice, the rendering can be soon aborted: the guiding points
may leave the screen space or the distances between the points may
grow so that the connections between guiding points become too
transparent to be visible (see Figure 4 (b)). A threshold for the ag-
gregated distances of the guiding points, hence, turned out to be a
reasonable stop criterion.

3.2 Interactively Controlling the Movement
Our approach is intended to be a drawing tool, and hence, needs to
be interactively controlled with direct visual feedback. As the rib-
bons are rendered at simulation time (the subroutine render(P, t)
of Algorithm 1 will be described in Section 3.3), the users can
see the spread of the ribbons and the effects of their interactions
directly—a video demonstrating the interactive process is available
online1. Users may change the parameters of the drawing algorithm
at runtime through keyboard shortcuts, increasing or decreasing the
values by a certain factor. As described in the previous section, the
movement of guiding points stops automatically if their accumu-
lated distance becomes too large. However, the movement of guid-
ing points can also be stopped manually by the user at any time.

The basic mouse interaction is the selection of a seeding point
on the canvas (by clicking on the screen). Once the seeding po-
sition is set, the guiding points are initialized and start to move
based on the method described in Section 3.1. The movement of
the guiding points can be manipulated by pressing a control key
(controlGuidingPoints option), which reinitializes the last updated

1Video available under: http://youtu.be/HUHU4ePpP-I
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Figure 5: Schematic illustration of the paths of guiding points using
the controlGuidingPoints option. In (a) the points are dragged behind
the mouse. In contrast, in (b) the mouse was kept at the same posi-
tion; here the result of every fiftieth time step t is shown.

guiding point and sets its position to the current mouse position.
Hence, when moving the mouse while the guiding points spread
across the screen, the user can drag the paths bounding the rib-
bons behind the mouse. Due to the positional reinitialization of the
guiding points, the paths get interrupted, which leads to an interest-
ing pattern that looks like a growing brush because only the posi-
tion but not the acceleration or velocity of the last updated guiding
point is reinitialized. Figure 5 (a) shows the paths of twenty guid-
ing points that are initialized on the very left and then reinitialized
one at a time while the mouse is slowly moved to the right. Fig-
ure 5 (b) shows the paths of twenty guiding points at time steps
t = 50, t = 100, t = 150, and finally t = 200, where the mouse was
kept at the same position while the controlGuidingPoints option
was enabled. In contrast to Figure 4, in Figure 5, we show the paths
of the guiding points only (black lines in Figure 4), where these are
colored based on the time (starting with blue at the seeding position
and ending with red at the youngest point in time ).

3.3 Rendering Algorithm
As mentioned before, the rendering of the ribbons is performed at
simulation time, concurrent with the movement of points. We use
a frame rate of 30 fps for our animation. The goal for rendering is
to connect the guiding points such that color gradients appear be-
tween the points which get darker or more opaque with decreasing
distance of the points. To this end, all pairs of guiding points at the
current time step are connected as already illustrated in Figure 4.
To create the impression of smoothly moving lines that leave a trail,
the points are, however, not connected by thin lines, but polygons
that fill the space between the current pair of guiding points and
the same pair from the previous time step. The transparency of the
polygons increases with the distance of the pair of guiding points—
varying transparency and overlap of polygons creates smooth gra-
dients with sharp contours. Different rendering setting can be used
to modify the appearance.

The specific rendering approach as implemented is described as
pseudo code in Algorithm 2. For all pairwise combinations of guid-
ing points (Pi,Pj), where i 6= j , the polygon defined by the previ-
ous and current position of the two guiding points is rendered using
color c and transparency α . In particular, the current average ab-
solute velocity of both guiding points is mapped to the color using
the subroutine getColor(v, t, i, colorMap) to stress the outer direc-
tion of movement. The current distance between the two guiding

Algorithm 2 Rendering

render(P , t):

P; // set of guiding points
t; // time step

v; // absolute velocity a guiding point
d; // distance between the current positions of two guiding points
c; // color of the polygon
α; // transparency of the polygon

drawSteps; // rendering option to draw steps
drawPathlines; // rendering option to draw the path of each Pi
colorMap; // rendering option defining the color map

for all Pi ∈P do
for all Pj ∈P do

if i = j then
continue;

end if
v := (getAbsVelocity(Pi, t)+getAbsVelocity(Pi, t))/2;
d := getDistance(Pi, Pj, t)
c := getColor(v, t, i, colorMap);
α := getAlpha(d, t, drawSteps);
fillPolygon(Pi, Pj, c, α, t);

end for
if drawPathlines then

// rendering option to draw the paths of guiding points
v := getAbsVelocity(Pi, t);
c := getColor(v, t, i, colorMap);
drawLine(Pi, c, t);

end if
end for

P2(3)

P2(2)

P2(1)

P3(3)

P3(2)

P3(1)P1(1)

P1(2)

P1(3)

Pi(0)

Figure 6: Schematic illustration of the rendering procedure. The ren-
dered polygon for P1 and P3 at time step t = 2 is highlighted in red.

points Pi and Pj is mapped to the transparency using the subroutine
getAlpha(d, t, drawSteps). Figure 6 illustrates the drawing proce-
dure for three guiding points Pi over three time steps, where the
position of a guiding point Pi at time t is marked by circles labeled
with Pi(t). To give a specific example, the polygon for P1 and P3
at time t = 2 consisting of points P1(1), P1(2), P3(2), and P3(1) is
highlighted in red.

Depending on the user-defined setting drawPathlines, the path
of each guiding point Pi (see black straight lines in Figure 6) is
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(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 7: Overview of rendering settings (κ = 4.0, δ = 0.2, and n = 20): different color map applied for each of the figures (a)–(h); (b) and (f)
rendered using the drawPathlines option; (c) and (g) rendered using the drawSteps option; (d) and (h) rendered using both options (drawPathlines
and drawSteps).

rendered. This is done by drawing a line from the previous to the
current position of the guiding point. Similar to the polygons, the
color depends on the current absolute velocity.

Besides the pathlines of the guiding points, another rendering
setting that has an interesting visual effect on the painting results
is the drawSteps option. If this option is enabled, the polygons
for every tenth time step are rendered less transparent—we chose
ten as parameter because it creates steps that are separable even
for small velocities and velocity increments. This rendering option
will be evaluated in the subroutine getAlpha(d, t, drawSteps). The
drawSteps option generates interesting step artefacts that remind of
spider webs (see Figure 7 (c)).

Finally, different color mapping options are an essential feature
of our painting approach. The velocity v, time t, or index i are
mapped to color using the subroutine getColor(v, t, i, colorMap).
Many color maps could be applied here; we integrated a set of se-
quential color maps for v and a diverging color map for t—created
with ColorBrewer [3]—that create aesthetically pleasing paintings
into our painting tool. These include color maps that map the veloc-
ity v to shades of gray , red , green , blue , purple ,
brown , or the time t to a spectrum of different hues .
Our painting tool also includes a color mapping option that is in-
dependent from the velocity: a guiding-point-based color mapping.
This mapping applies two hues by alternating between them for
the successive guiding points (see Figure 15), where the color c of
the polygon for Pi and Pj depends on the index i of the first guid-
ing point. The user can choose among those color mappings in-
teractively before or during the painting procedure using keyboard
shortcuts.

The settings of the rendering method are illustrated in Figure 7.
It shows a summary of the available sequential and diverging color
mappings of the velocity (Figure 7(b-h)) as well as the color map
alternating between two hues (blue and red) based on the guiding

points indices (Figure 7(a)). Figure 7 also illustrates the render-
ing options drawPathlines (second column) and drawSteps (third
column) individually as well as in combination (last column).

3.4 Parameter Space

In this section, we want to demonstrate how the different parameters
of our acceleration model as well as the different rendering settings
affect the appearance of the ribbons.

The first parameter that comes into play is the number of guiding
points. This parameter affects the number of resulting ribbons (see
Figure 8). The simple effect is that, with an increasing number of
guiding points, the ribbon structure becomes denser. Figure 8 was
generated with the gray scale sequential color map and using the
drawPathlines option to highlight the paths of guiding points.

The first parameter that influences the acceleration model is the
volatility κ . As demonstrated in Figure 9, the volatility κ con-
trols the possible variation of the random change of acceleration.
It therefore indirectly affects how much the guiding points change
their direction—from smooth to curly lines.

The velocity increment δ first of all controls the velocity in-
crease, hence the movement of a guiding point from one time step
to the other and the size of the polygons that are rendered. Fig-
ure 10 illustrates this by alternating between light gray and black
after every second time step t without mapping the velocity, where
the distance is mapped to the transparency as described before. The
resulting ring-like pattern that becomes stronger with increasing δ

shows that the velocity changes more uniformly with increasing
δ . Figure 10 shows that δ indirectly also affects the curvature of
the ribbons: with increasing δ , the ribbons become less curved but
more regular. Hence, κ should be increased together with δ to keep
the degree of curvature about constant.
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20 40 60 80

Figure 8: Effect of changing the number of guiding points n, where δ = 0.1 and κ = 2.0.

0.25 1.0 4.0 16.0

Figure 9: Effect of changing the volatility κ, where δ = 0.1 and n = 20.

0.1 0.5 1.0 1.5

Figure 10: Effect of changing the velocity increment δ , where κ = 2.0 and n = 20.
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Figure 11: “Flowers” generated using a higher number of guiding points (n = 40); κ = 4.0 and δ = 0.1.

(a)

(b)

Figure 12: Reuse of the same initial seeding position over (a) six and
(b) three runs; κ = 2.0, δ = 0.2, and n = 20.

4 EXAMPLES

In this section, we show how our painting approach can be used to
create different paintings and how the parameters and interactions
can be altered to achieve different painting styles.

We used our painting approach to generate floral representa-
tions applying different drawing mechanisms. The representations
in Figure 7 show organic smoothly curved ribbons starting in one
point (the seeding position) and running into different directions,
thereby partially overlapping each other. These ribbons look, to
some extent, like the petals of a flower. However, although these
representations show flower-like characteristics, the “flowers” are
still very sparse with respect to their “petals”. To make the rep-
resentations more flower-like, we can either increase the number
n of guiding points (see Figure 11) or use the same seeding point
for several runs (see Figure 12). To avoid extreme—with respect
to the shape of “flowers” unnatural—curvatures of the ribbons, we
set the volatility to κ = 0.2. For Figure 11, we applied a higher
number of guiding points (n = 40) to generate two flowers, where
the drawPathlines option was enabled to produce the impression of
an abstract stained glass painting. The “flowers” in Figure 12 were
generated by clicking the same point on the display over and over
again, where a new set of guiding points was only initialized once
the movement of the previous set stopped. In Figure 12 (a), the
same color map is used for six runs, whereas in Figure 12 (b), three
different color maps are used and the paths of guiding points are
drawn to highlight the edges of the “petals” of our abstract flowers.

Also the controlGuidingPoints option can be used to generate
“flowers”. By enabling this option and keeping the mouse at its
position, the guiding points are reinitialized at that same position
over and over again, which leads to star- or hedgehog-like pat-
terns (see Figure 13). As the color map used for the velocity maps
high velocities to red, the “flowers” become completely red af-
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Figure 14: “Floral loop” generated using the controlGuidingPoints option and the diverging color map for the velocity; κ = 16.0, δ = 0.1, and n = 20.

Figure 13: “Flowers” generated using mouse interaction and the
controlGuidingPoints options; κ = 0.5, δ = 0.2, and n = 20.

ter a while. The yellow inner part of the “flowers” can be drawn
by starting the moveGuidingPoints subroutine again and using the
controlGuidingPoints option, but stopping it early (before the ve-
locity gets too high).

To generate abstract floral representations that go be-
yond the blossom, we move the mouse while enabling the
controlGuidingPoints option. Figure 14 shows an example of
a floral loop colored based on the time. First, the loop itself
was drawn by moving the mouse in a curve while keeping the
controlGuidingPoints option enabled. Then, a new set of seed-
ing points was initialized at the end of that loop, where the
controlGuidingPoints option was activated only every few time

steps for the same seeding position. This way, the ribbons could
move freely but not too much outside of the desired radius.

Besides floral representations, we also used our approach to cre-
ate paintings that give the impression of folded fabric. The ribbons
in Figure 1 were created using a stronger acceleration in x-direction
for the majority of ribbons. To generate relatively straight ribbons
in the horizontal direction that give the impression of a bow, we use
a low volatility of κ = 0.5. Finally, the drawSteps option was used
to generate the striped texture pattern.

Also the representation in Figure 15 gives the impression of
folded fabric. Here, we use the coloring of ribbons by guiding point
index to generate ribbons of two different colors—red and blue—
without a change of color along the ribbon. This creates ribbons
that—to some extent—look like silk scarfs that are twirled together
at a point and moving away from that center (here we see four such
scarf nodes). Again, to generate a texture-like pattern on the fabric,
we used the drawSteps rendering option.

5 APPLICATION TO FLOW DATA

There are various flow visualization approachesthat show the move-
ment of particles in 2D or 3D space. These depend on the vector
field, i.e., the movement of a particle depends on the vector at its
current position. In contrast, we let particles move into random
directions from a user-defined initial position, where the particle
movement is independent from the current particle position. Al-
though the random movement of particles is an essential aspect of
our painting approach, the rendering algorithm can also be applied
to the movement of particles described by pathlines. Figures 16 (a)
and 16 (d) shows the result of applying our rendering approach to
pathlines of the Kármán flow data set. The pathlines were derived
for different time steps and intervals as well as slightly different
seedings. As these pathlines depend on the data, the painting sys-
tem becomes more rigid and looses its stochastic nature.
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Figure 15: “Folded silk scarfs” generating using the guiding-point-based coloring and the draw steps option; κ = 1.0, δ = 0.1, and n = 25.

(a) 1.0 : 0.0 (b) 0.995 : 0.005 (c) 0.990 : 0.010 (d) 1.0 : 0.0 (e) 0.985 : 0.015 ( f ) 0.975 : 0.025

Figure 16: Application to flow data: pathlines from the Kármán data set derived using two different seedings and visualized using our rendering
technique. We used two different color mappings, one for each seeding: (a)–(c) a sequential color map for the velocity or (d)–(f) a diverging color
map for time. While (a) and (d) are only based on the data, the other figures were generated with a certain random influence described by the
ratio data : random.
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At least, the deterministic behavior can be dissolved to some
extent by influencing the data-based particle movement by a ran-
dom movement of points starting at the same seeding positions.
We initialize a set P of guiding points, one Pi for each seeding
point and hence pathline, and let those move as described in Sec-
tion 3.1. Finally, the effective movement of each particle is defined
by the weighted sum of data- and random-based positions at sim-
ilar time. The relative influence of both is described by the ratio
data : random. Figures 16 (b), (c), (e), and (f) show the results of
randomizing the pathlines of (a) and (d) with different random influ-
ences. The latter two show that, with increasing time, the randomly
moved particles have a larger influence as their velocity increases
with time. This randomization produces more art-like versions of
the original pathline visualizations, which are of course not suitable
for any data analysis.

6 CONCLUSION

We presented a painting tool to draw overlapping, semi-transparent
ribbons. To create organic, aesthetic shapes, users of the tool do not
have to draw the shapes manually, but an algorithm randomly cre-
ates these ribbons. Nevertheless, the algorithm can be controlled by
the users through interactively setting seeding points and changing
the movement parameters and rendering options. By systematically
varying these settings, we showed how our approach can be used to
generate different visual patterns similar to patterns occurring in
nature. We demonstrated that the approach is capable of produc-
ing visually appealing images that share the aesthetics and char-
acteristics of floral representations but also of flow visualizations.
With respect to the latter, we refer to pathlines of a time-dependent
vector field, which do overlap and—depending on the rendering
technique—can create similar visual patterns as our technique. In
contrast to a flow visualization approach—which is based on data
and can only be changed significantly by changing the data and
seeding—our approach has more fine-grained interactions. While
the approach is only able to produce a limited similarity to flow vi-
sualizations, an open question still is how to transfer other styles
and features of flow visualizations into a painting tool like ours.
Moreover, our approach does not aim at drawing detailed objects
as it would be possible with brushes and pens. Instead, our paint-
ing approach—although influenceable—has a relatively high ran-
dom component that creates a rather coarse brush when used with
mouse movement. In the future, we want to explore further inter-
action techniques for our painting tool including multi-dimensional
interactions by several users, e.g., on a touch table.
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