Dynamic Generation and Prefetching of Data Chunks for
Exploratory Visualization

Leilani Battle*
MIT

Remco Chang’
Tufts University

Michael Stonebraker *
MIT

Abstract— With many current visualization systems, users must manually throw data away until it fits in memory, before they can
visualize it. We propose instead to expose this resource-latency tradeoff to the user directly, by allowing the user to specify resource
constraints and have the system adjust automatically. In this paper, we present ForeCache, an exploration system that visualizes
aggregated views of datasets stored in a DBMS. We implemented a number of server-side techniques in ForeCache for prefetching
small subsets of aggregated data (i.e. chunks) for fast visualization of large datasets. Our techniques leverage locality in the user’s
exploratory behavior, and improve upon existing techniques in two ways. First, instead of pre-computing all data chunks in advance,
we reduce storage requirements by only pre-computing a subset of chunks in advance, and computing the remaining chunks at run-
time as needed. Second, we balance runtime computation costs by predictively building and caching new chunks in anticipation of

the user’s needs.

Index Terms—Data Exploration, Predictive Caching

1 INTRODUCTION

One common way to explore a new dataset is to load it into a database
management system (DBMS), and execute queries over it. Many
DBMS users also prefer to interact with a DBMS through visualization
tools, such as Tableau (originally Polaris [5]).

However, many of these tools must first load the full dataset into
memory. Thus you can easily store a large (i.e., 20+ GB) dataset on
your laptop, but must shrink it down to a handful of gigabytes before
you can visualize it. Even when housing the DBMS on remote servers,
these machines are often a shared resource, and are not exclusive to
the user. As a result, users must throw data away before they even start
exploring it, often by executing hand-written (and expensive) sampling
or aggregation queries on the DBMS.

It would be much simpler for users to point to a dataset or query,
define a set of resource constraints, and have the visualization tool
handle the rest. In the face of these resource limitations, how can
visualization systems still provide a faster exploration experience for
users? To this end, we developed ForeCache, a visualization system
for exploring aggregated views of data stored in a DBMS. ForeCache
adopts a client-server model, where the server queries the DBMS to
build an aggregated version of the dataset (i.e., aggregate view), and
the client (e.g., a laptop) renders aggregated data in the browser.

The key insight behind ForeCache is that typical user exploratory
behavior is sequential (users move in predictable directions), incre-
mental (users explore small subsets of the data at a time), and slow
(users need time to understand the output) [3]. Leveraging these prop-
erties, ForeCache divides aggregate views into fixed-sized subsets (i.e.,
chunks) for efficient retrieval [4]. Thus we can support a flexible spec-
trum of resource constraints by only retrieving the chunks that the user
actually explores. To make initial data requests fast, we pre-compute
as many chunks as space allows before the user starts to explore.

To balance runtime costs, we use prediction models to identify
which new chunks to build and cache as the user starts to move outside
our pre-computed regions [2, 3]. We extend current prediction tech-
niques in two ways. First, we implemented two novel, data-focused
prediction models to supplement existing techniques. Second, we de-
veloped a new approach for running multiple models in parallel and

*e-mail: leilani @csail.mit.edu
fe-mail: remco@tufts.edu
*e-mail: stonebraker@csail.mit.edu

Level 1 Level 2

o] 3 5 il
: i

e —

LO L1 L2 |

o

(a) Data ranges for a three-level
chunking scheme with one, four
and 16 chunks.

(b) One chunk at level 1 covers
the same range as four higher
resolution chunks at level 2.

Fig. 1: Examples of the ForeCache chunking scheme.

blending the resulting predictions into a single set of ranked recom-
mendations. In this paper, we present the design of ForeCache, and
the techniques we use to predictively generate and cache chunks.

2 ARCHITECTURE

We implemented ForeCache by extending the ScalaR system [1].
ForeCache has a web-based visualization interface, a middleware layer
for caching chunks in memory, and a backend layer for computing
chunks in the DBMS and storing them on disk.

Chunks are non-overlapping subsets of aggregated data. We use
layers of chunks to support zoom levels (one per zoom level). Each
layer of chunks spans the entire dataset, and the size and number of
chunks controls the amount of aggregation (i.e., resolution). For ex-
ample, in the three-level chunking scheme in Figure 1a, the top level
is a single, coarsely aggregated chunk covering the full dataset. The
next level aggregates the dataset into four higher resolution chunks.

The front-end captures user interactions and sends corresponding
chunk requests to the middleware layer, which in turn dispatches these
requests to the backend computation layer and caches the resulting
chunks. The backend layer utilizes the DBMS (in this case, the array-
based DBMS SciDB) to compute chunks from the raw data, and stores
the chunks retrieved from the DBMS in a disk-based cache.

ForeCache supports a simple pan and zoom interface for explo-
ration (see Figure 2). The user can pan up, down, left and right. She
can also zoom out to the corresponding chunk one zoom level above,
or zoom into one of four higher resolution chunks at the zoom level
below (see Figure 1b).

3 PREDICTION METHODS

We implemented 5 prediction models (3 existing, 2 new). Each
model has access to a list of the user’s recent chunk requests, P =

+ | @tile: [19,14] z00m level: 6

+ + *

This visualization satisfies the goal requirements: (] [yes, no] @

Filter Options

add a filter: attrs.avg_ndsi T+
attrs.max_land_sea_mask: @ff) ® 7 %
attrs.avg_ndsi: -0.55271 [] @596 x

Apply Filter Effects Clear Filter Effects

Fig. 2: Example of the ForeCache interface

Histogram

Wt 229,011

(a) User history (b) Momentum picks (c) Hotspot picks tg.
Wt 43=2.57,0,=1.13

(hotspots in red.) ta.

U3 3 [| tA tB
PRl | [R W R

gl [[N [|
[[[| HEEE

€ - -~

tg §j.=={ Wt #5=2.71,0,=1.11 A A
value ‘

12 3 4 T
value value
12 3
(d) Data distributions for 74, t4
and 7p.

Normal

(e) Histogram and Normal
models, comparing 74 and 7.

Fig. 3: Example of how all models compare 74 and t

[fa,t1—1,.--,11], and the set of candidate chunks for the user’s next re-
quest (t, is the user’s most recent request). Note that we currently only
consider candidates that are exactly one move away from the user’s
current location. Thus, there are at most 9 possible chunks the user
may request (one per movement in the interface).

This section describes our prediction models, and how ForeCache
combines these models to provide a single set of predicted chunks.

3.1 Existing Prediction Models

Momentum: This model is similar to that used in the ATLAS sys-
tem [2], and assumes that users will continue in the direction they are
already moving. For example in Figure 3, the user has moved from
chunk #| to #4, and chunks 74 and tp are the user’s next possible steps.
The user recently moved right (twice) more often than down (once).
Thus the momentum model ranks 74 higher than #p.

Hotspot: The Hotspot model extends the Momentum model by
identifying popular chunks, or hotspots, in the dataset [3]. Hotspots
are learned offline from past user sessions. We see how the Hotspot
model deviates in Figure 3. Though moving down is less likely in Fig-
ure 3b, we see that 75 is actually a nearby hotspot. Thus the original

behavior is overridden in favor of reaching the hotspot (Figure 3c).
Ngram: The goal of the Ngram model is to predict interaction pat-
terns by treating them as word sequences, or n-grams. For exam-
ple, we currently learn trigrams (interaction sequences of length 3)
and bigrams (length 2). The Ngram model counts all 3-length and
2-length sequences. Using counts, the Ngram model can assign con-
fidence values by applying simple Bayes formulas. For example, the

trigram for ¢4 in Figure 3 is (“down”, “right”, “right”), and the bigram

99

is (“right”,“right”). The final confidence value for 7, is the trigram
frequency divided by the bigram frequency.

3.2 New Data-Focused Prediction Models

The insight behind our new models is that users move between clusters
of similar chunks, which is not fully captured by existing techniques.
If we can capture these properties in a concise signature computed for
each chunk, we can compare these signatures to find clusters. Our
initial models compute statistical signatures to identify similarities in
the underlying data distributions of each chunk.

Normal: The Normal model computes the mean and standard de-
viation over a single attribute for the chunks to compare. The squared
differences between the mean and standard deviation are summed, and
the inverse root of this sum is returned. Figure 3 continues our ex-
ample, showing the distribution stored in the requested chunk #4, and
candidate chunks 74 and 75. Figure 3d shows the mean and standard
deviation for each chunk. The computed difference between 74 and tp
is greater than between #4 and 74 (Figure 3d, bottom). Thus, 75’s simi-
larity value (0.28) is smaller than #4’s (0.42), and t,4 is ranked higher.

Histogram: The Histogram model builds a histogram over each
chunk, and sums the squared difference between the bins of the result-
ing histograms. The inverse root of this sum is returned. Comparing
the histograms in Figure 3d, we see that 75 contains fewer differences
across bins than #4 (highlighted in red in Figure 3d). As a result, #4’s
similarity value (% =0.71) is higher than 1g’s (ﬁ =0.50).

3.3 Combining Predictions From Multiple Models

Our prediction models can be run in parallel, and all results are
blended into a single list of ranked predictions. To do this, each model
ranks its predictions, and each ranking is assigned a certain number
of votes (e.g., 8 votes for rank 1, 4 for rank 2, etc.). The votes are
summed across models and sorted, and the new list is returned.

Users can can also assign weights to each model to favor certain
models over others during voting. Thus users can further tune the
prediction accuracy of ForeCache by assigning higher weights to the
models better suited to the underlying data.

4 CONCLUSION AND FUTURE WORK

We presented a brief summary of ForeCache, a visualization system
for exploring aggregate views of data stored in a DBMS, given user-
defined resource constraints. We divide datasets into chunks, allowing
for finer-grained caching of data. ForeCache caches a subset of chunks
before the user starts exploring, and uses prediction models to learn
what chunks to cache as the user moves beyond pre-computed regions.

We are currently working on two improvements to ForeCache.
First, we are expanding our set of data-specific prediction models.
Second, we are adding techniques to support long-range predictions.
We are also conducting a study with ForeCache, where users will ex-
plore satellite imagery data recorded by the NASA MODIS.

REFERENCES

[1] L. Battle, R. Chang, and M. Stonebraker. Dynamic reduction of query
result sets for interactive visualization. BigDataVis 2013.

[2] S.-M. Chan, L. Xiao, J. Gerth, and P. Hanrahan. Maintaining interactivity
while exploring massive time series. VAST 2008.

[3] P. Doshi, E. Rundensteiner, and M. Ward. Prefetching for visual data ex-
ploration. DASFAA 2003.

[4] Z. Liu, B. Jiang, and J. Heer. immens: Real-time visual querying of big
data. EuroVis 2013.

[5] C. Stolte, D. Tang, and P. Hanrahan. Query, analysis, and visualization of
hierarchically structured data using polaris. KDD 2002.

	Introduction
	Architecture
	Prediction Methods
	Existing Prediction Models
	New Data-Focused Prediction Models
	Combining Predictions From Multiple Models

	Conclusion and Future Work

