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ABSTRACT

Machine Learning techniques can automatically extract informa-
tion from a variety of multimedia sources, e.g., image, text, sound,
video. But it produces imperfect results since the multimedia con-
tent can be misinterpreted. Machine Learning errors are commonly
measured using confusion matrices. They encode type I and II er-
rors for each class of information to extract. Non-expert users en-
counter difficulties in understanding and using confusion matrices.
They need to be read both column- and row-wise, which is tedious
and error prone, and their technical concepts need explanations.
Further, the visualizations commonly used by Machine Learning
experts make use of complex metrics derived from confusion matri-
ces (e.g., Precision/Recall, F1 scores). These can be overwhelming
and misleading for non-experts. Derived metrics convey specific
types of errors, and may be inappropriate for specific use cases. For
instance, type II errors (False Negative) are critical for medical di-
agnosis while type I errors (False Positive) are more tolerated. In
the case of optical sorting of manufactured products (defect detec-
tion), the sensitivity to errors can be the opposite. Non-experts may
use inappropriate metrics for their use case, or misinterpret them.
We propose a novel visualization design that addresses such issues
with non-experts users. We specify the potential misinterpretations
that can arise in typical use cases of machine learning applications.
We argue that our visualization is likely to be easier to understand
and to minimize the risk of misinterpretation, and so for all kind of
use cases. We conclude by discussing future empirical evaluations
of our design.

Index Terms: H.5.2 [Information Interface and Presentation (e.g.,
HCI)]: Prototyping— [1.2.1]: Artificial Intelligence—Applications
and Expert Systems

1 USE CASES

Confusion matrices are the major mean to evaluate errors in clas-
sification problem (the sorting of items into classes, i.e., categories
or kinds of items). Supervised machine learning is a typical ap-
plication for confusion matrices. They encode the complete spec-
ification of misclassifications: the numbers of misclassified items
for each pair {original class in which items should be classified,
incorrect class in which items are erroneously classified}. Items
are known to belong to an original class from a trusted set of pre-
classified items (a ground-truth). Confusion matrices are used for:
1) inspecting errors for each class (e.g., Fig. 1); ii) tuning software
parameters such as detection thresholds (e.g., each set of parameter
values yield a matrix); iii) comparing software versions (e.g., each
software yield a matrix). For binary classification (i.e., items are
either selected or discarded), the selection of software version, or
parameter settings, basically rely on the tolerance to unclassified,
missed items (False Negatives FN or Type II errors), and classified
but deceiving items (False Positives FP or Type I errors). For mul-
ticlass problems (i..e, items are classified into several categories),
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type I and II errors are appraised for each class. The sensitivity to
either error type depends on application domains. In some domains,
type I (FP) are critical while type II (FN) are more tolerated: e.g.,
fraud detection involving automatic suspension of services (bank,
mail, social media), biometric identification, recommendation, op-
tical sorting (referred here as Case A). In other domains, type II
(FN) are critical while type I (FP) are more tolerated: e.g., medical
diagnosis, threat detection (Case B). Others are sensitive to both
error types: e.g., character recognition, monitoring of population
dynamics, ecology research (Case C).

2 IssUES wWITH CONFUSION MATRICES

Analyzing misclassifications is complicated since FN for one class
are FP for another. E.g. in Fig. 1, the cell with orange background
indicates both 9 FN missed for Barracuda classification, and 9 FP
added for Clown Fish classification. To fully understand the errors
impacting one class, users need to inspect the matrix both column-
wise (e.g., to inspect FN in Fig. 1) and row-wise (e.g., to inspect
FP in Fig. 1). We consider that memorizing all cell values, and
their semantic, is a major issue: users can forget cell values, or
may read only columns or rows. Confusion matrices are usually
synthesized by cumulating misclassifications for each class, thus
reducing the number of data cells to read. E.g. in Fig. 1, the orange
cell is counted in both blue cells. Such basic metrics are equiv-
alent to considering each class as a binary classification problem.
Users can no longer distinguish which classes are likely to be con-
fused with another. This is an issue in domains analyzing trends
over time (e.g., population dynamics). For instance, an important
increase of one class implies an increase of its FN, and can thus
induce a deceiving increase in other classes. Confusion matrices
are usually synthesized further by deriving advanced metrics from
the basic metrics: basically rates of correct and incorrect classi-
fications over total numbers of items to detect or discard. Fig. 1
shows widely used metrics and their formulas. Advanced metrics
are complicated for non-experts. They may not know which metrics
suit their use case, or misinterpret them. E.g., high TN may conceal
critical errors by yielding low FP Rate and high Accuracy. Preci-
sion does not convey the errors critical for Case A, nor Recall and
FP Rate for Case B, nor Accuracy and F1 score convey the errors
critical for neither Case A and B. For Case C, using only one metric
amongst Precision, Recall and FP Rate does not convey sufficient
information.

Machine Learning experts usually visualize confusion matrices
by plotting together pairs of advanced metrics, e.g., TP and FP
Rates (ROC curves) or Precision/Recall. Fig. 2 shows such visu-
alization for 2 software (with different ground-truth size), and for
different parameter setting (the points A to D represent 4 detection
thresholds). The risk to overwhelm and confuse users is ampli-
fied with pairs of metrics. For selecting a threshold, non-experts
may not identify the point offering the best tradeoff between type
I and II errors: it is case-depends and there is not one universal
best point on the curves. For comparing errors between classes,
curves can be drawn for each class, giving errors for each parame-
ter settings while only one setting will be used. It adds unnecessary
information, which saturates user memory and is error-prone. Fi-
nally, classifiers’ errors can appear identical in one type of curve,
while another view would reveal further differences (Fig. 2).
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Figure 3: Visualization for analyzing of inter-classes confusions.

3 VISUALIZATION DESIGN

To ease non-experts’ interpretation, we display only True Positives
TP (correct classifications), FN and FP (Fig. 2). True Negatives
TN (items correctly discarded) are omitted since they are poten-
tially uninteresting (e.g., not contained in end-results) and mislead-
ing (e.g., high TN yield high Accuracy). We primarily show raw
numbers of errors (e.g., in Fig. 2) which are more tangible, without
rates and advanced metrics, which require higher abstraction level
from users. It preserves some information hidden in ROC and Pre-
cision/Recall curves: the numbers of item in the ground-truth. It
displays both type I and II errors, without attempting to show their
proportion relatively to case-dependent frames of reference. Hence
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v k © © Initial user study shows that basic and advanced metrics (Fig. 1) are
/ ® b likely to be overwhelming for non-experts [1]. It suggests that ex-
pert visualizations (ROC and Precision/Recall curves) are not rec-
_ ommendable for non-experts. To empirically validate our design,
we will compare user responses when using either our visualization,
. A”jh""y Barracuda ClownfFish  Other Classes or the usual ROC and Precision/Recall curves. We will investigate
egend:

i) user effectiveness and efficiency in selecting case-depend opti-
mal parameter settings and software versions (including ground-
truth quantity); and ii) user level of confidence in their interpreta-
tion of end-results, and its consistency with the actual uncertainty.
Experiments possibly include experts and non-experts, to compare
visualization requirements for each audience. An application of our
design, and its integration in a data analysis interface, can already
be demonstrated (prior demo [2, 3]).
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