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Figure 1: The USA population in 49 states according to the HistoMaps layout (left), the Weighted Maps layout (middle) and the Spatially Ordered
Treemaps layout (right). All three algorithms generate positional anomalies.

ABSTRACT

The wide availability of quantitative geolocated structured data, e.g.
census data, makes it desirable for classic tree visualizations to be
location-aware. In this paper, we introduce a new treemap algo-
rithm that produces rectangular cartograms consistently with the
known location of data points on a geographic map.

Index Terms: H.5.2 [User Interfaces]: Graphical user interfaces
(GUI)—Screen design;

1 INTRODUCTION

Broadly speaking, two main approaches are used to visualize hier-
archical data: node-link diagrams and recursive enclosure of shapes
(see the Treevis.net project [5] for a comprehensive list of tech-
niques). This work falls in the second category where Treemaps [6]
are the most well-known technique. Our purpose is to contribute
to the research work that considers spatial properties of nodes in
treemap layouts. To illustrate the problem, we consider the recur-
sive split of a territory into administrative subdivisions. Such hi-
erarchies can easily be represented by a treemap where the size of
rectangles may encode a variety of abstract region attributes such
as population. However, in the case of standard treemap layout
algorithms, node position is not correlated to their known geoloca-
tions, undermining the ability of culturally trained map users to get
a meaningful overview of the whole territory or to rapidly locate
specific regions by using their prior knowledge of geography.

2 THE WEIGHTED MAPS ALGORITHM

The Weighted Maps layout (WM) is based on the idea of slicing the
display space into chunks (denoted Ci in Figure) in which the data
points are allocated sequentially from East to West, or from North
to South, while maintaining weight/area proportionality. The slic-
ing direction is chosen in order to yield chunks with the best aspect
ratio (closer to 1). As data points are gradually allocated to a chunk
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and the sum of enclosed weights gets close to the chunks capac-
ity, a decision has to be made as to expanding the chunk slightly
to accommodate the last point or shrink it to match the weight of
previously allocated points. Once the chunk’s free edge (the west-
ern or the southern edge) is adjusted, all unallocated points are laid
out in the next chunk. This splitting strategy is repeated recursively
until each chunk holds a single data point. Below we walk through
the algorithm on an illustrative example depicted in Figure 2.

Step 1: We start with a table T containing seven geolocated data
items ti, that have additional attributes. First we determine the size
si of each item, based on the data attributes, e.g. population. The
area ai for item ti in the layout will be proportional to its size si.

Step 2.a: The data items are laid out in an available area Ak,
where k represents the depth of recursion. The order in which the
data items are laid out is based on the aspect ratio of Ak. In the
example, A0.width > A0.height, thus the items in T are sorted ac-
cording to their x coordinate (or latitude).

Step 2.b: The algorithm determines the preferred area Cpre f of
a chunk in Ak based on Ak.width and Ak.height. Instead of adding
items to a chunk until the chunk aspect ratio reaches one (as in the
squarified treemap approach), our approach chooses an aspect ratio
for the chunk upfront which will be close to one but not necessarily
exactly one. This prevents having, for example, two square chunks
and one elongated chunk at the end. The algorithm tries to mini-
mize the difference between the preferred and the actual area of a
chunk. Hence, the first chunk C1 is shrunk making its capacity a1.
C1 contains just one item, therefore recursion ends here and C1 can
be laid out in A0. The direction in which items are laid out (East to
West or North to South) in each chunk in A0 is based on the aspect
ratio of A0. Next, the algorithm proceeds in the same way for C2
in step 3. In this case it recurses, though without leading to visual
changes of the layout (step 5).

Step 4: Since the number of chunks is determined upfront, the
remaining items are put in C3.

Step 6: Here the algorithm recurses into C3. Note that in step
6.3 A7’s height is greater than its width, and therefore the layout
direction becomes from North to South. When it returns from the
recursion, the final WM is laid out as shown in step 7.

It is worth noting that at the beginning, depending on the as-
pect ratio of the root node, the available space may be partitioned
in more than two equal sub-rectangles. In Figure 2, A0 is split in
three. However, in further recursion steps, the WM algorithm will
eventually turn into a binary space partitioning algorithm.



Figure 2: An illustration of the Weighted Maps layout on a flat hierarchy with 7 geolocated nodes.

In the case of multi-level hierarchies, the algorithms may be ap-
plied level by level to lay out top-level nodes first according to the
algorithm explained previously, then recursively by laying out chil-
dren nodes further down in their respective parent space.

3 RELATED WORK

The need for location-aware tree representations has previously
been addressed in the information visualization community using
treemap variants. The Histomap algorithm (HM) was used to visu-
alize email server logs taking into account the geographic origin of
emails [4]. HM uses a binary partitioning scheme of the data points
set which splits the latitude/longitude range in halves recursively
in order to determine the position of rectangles. The Spatially Or-
dered Treemaps algorithm (SOT) addresses the same problem [9].
Building on the squarified treemaps algorithm [1], instead of sim-
ply taking the nodes in turn based on data order, they place the
nodes based on their distance to the enclosing rectangle to be filled.
A computational study compared SOT to HM with respect to their
average aspect ratio, average distance displacement and average an-
gular displacement. Beyond flat cartogram generation, both SOT
and HM can handle multi-level trees [7].

The inclusion of spatial constraints into treemaps puts our work
in the substantial amount of research about rectangular cartograms.
Tobler’s extensive review of cartograms [8] summarizes the work
in this domain. It points out the preservation of neighborhood re-
lationships as a useful quality criterion. Focusing on adjacency
preservation, Buchin et al. [2] use a graph structure to formulate
the cartogram generation problem as a graph optimization prob-
lem. Priority is given to adjacency preservation, by compromising
on the proportionality between node weights and rectangle areas.
Other recent work explore the use of grid layouts of geographic
subdivisions. For instance, Eppstein et al. [3] model the problem as
a point set matching optimization problem. An extensive review of
cartogram generation is however beyond the scope of this paper.

WM differs from HM insofar that the latter uses the middle of

the longitude/latitude range as a pivot. In the WM layout, no com-
promise is made on node weights, and aspect ratio is explicitly op-
timized. Geolocation and relative orientation are of prime impor-
tance in both. It differs from multi-objective optimization-based
cartogram generation approaches with respect to the high computa-
tional cost that such techniques incur, at the expense of interactivity.

4 PERSPECTIVES

Early tests reveal significant differences between the three location-
aware treemap layouts regarding large flat cartograms. Future work
includes a thorough comparative study of these algorithms based
on real and simulated datasets to assess their scalability, as well as
user experiments for usability assessment.
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