
Reactive Data Visualizations
Curran Kelleher, Haim Levkowitz

Computer Science Department
University of Massachusetts

Lowell, USA
https://github.com/curran/portfolio

http://www.cs.uml.edu/˜haim/

Fig. 1. The data flow graph for a reactive bar chart based on reactive models,
our core contribution.

Abstract—Managing complex data flows and update patterns
is one of the most difficult challenges in interactive data visual-
ization. For example, constructing interactive visualizations with
multiple linked views can be a daunting task. Functional reactive
programming provides approaches for declaratively specifying
data dependency graphs and maintaining them automatically. We
argue that functional reactive programming is an appropriate
and effective abstraction for interactive data visualization. We
demonstrates the effectiveness of our proposed approach in
several visualization examples including multiple linked views.
We also provide a catalog of reusable reactive visualization
components.

Keywords-multiple linked views; interaction technques; infor-
mation visualization;

I. INTRODUCTION

Constructing interactive visualizations is a complex task.
The task becomes even more complex when multiple visual-
izations are presented and linked together through interactions.
The issue at the core of interactive visualization and linked
views is management of complex data flows and update
patterns. Even with the wealth of visualization toolkits and
libraries that exist today, there is a need for an abstraction
that addresses these core issues. The contribution of this paper
is a novel approach for developing reusable interactive visu-
alization components using concepts from functional reactive
programming.

Interactions within data visualization environments have
been well studied. Becker et al. investigated brushing in scatter
plots [1]. Shneiderman et al. explored dynamic queries in

Fig. 2. An example of linked views, powered by reactive visualization
components. Brushing to select records in the scatter plot causes the selected
data to be aggregated and displayed in the bar chart.

general and how these operations fit into a larger context of
visual information seeking [2]. Ward introduced a visualization
system based on multiple linked views with direct manipula-
tion techniques including brushing and linking [3]. Interactive
data visualizations can be linked together such that interactions
in one visualization cause updates in another visualization.
This technique is referred to as “multiple linked views” [4]
and “brushing and linking” [5], [6].

We introduce a novel way to combine elements of functional
reactive programming with the Model View Controller (MVC)
paradigm to create what we call reactive models. These
reactive models can serve as a foundation for reusable in-
teractive visualization components. This approach overcomes
limitations of traditional MVC frameworks, and is simpler
than using a full blown functional reactive programming
framework.

For complex applications such as interactive visualizations,
managing propagation of changes can quickly become com-
plex. To provide a solid foundation for dynamic visualization
systems, models should be able function in the context of data
dependency graphs. Developers should be able to declaratively
specify data dependencies, and change propagation should be
automatically managed. The when operator from functional
reactive programming propagates changes from one or more
reactive functions (such as is found in the JavaScript libraries
Bacon.js and RXJS). We apply the when operator to our
simple key-value models to yield what we call reactive models

https://github.com/curran/portfolio
http://www.cs.uml.edu/~haim/


TABLE I
REUSABLE REACTIVE VISUALIZATION COMPONENTS.

Component Diagram Description

margin Computes the size of the inner visualization rectangle based on the container size (which may
change when the user resizes the visualization) and the configured margin.

xScale Computes the X scale. The domain is computed from the input data by evaluating the X attribute
bounds. The range is computed from the inner visualization width.

xAxis Renders the X Axis (the center line, tick marks and tick labels) from the X scale.

xAxisLabel Renders the text label for the X Axis.

yScale Computes the Y scale. The domain is computed from the input data by evaluating the Y attribute
bounds. The range is computed from the inner visualization width.

yAxis Renders the Y Axis (the center line, tick marks and tick labels) from the Y scale.

yAxisLabel Renders the text label for the Y Axis.

colorScale Computes the color scale. The domain is computed from the input data by evaluating the set
of unique values foun in the color attribute.

II. REACTIVE VISUALIZATIONS

Interactive visualizations must respond to changes made
by users such as resizing of the display, changes in the
data driving the visualization, changes in configuration, and
updates from other visualizations in a linked view context. We
introduce reusable reactive visualization components, shown
in table I, and show how they can be composed to form
interactive visualizations and linked views.

A. Visualization Primitives

Consider visualizations such as the bar chart, line chart,
stacked area chart, parallel coordinates and choropleth map.
These visualizations share many underlying primitives such as
scales, axes, margins and labels [7]. Interactive forms of these
visualizations also share interaction techniques for selecting
visual marks such as rectangular brushing, hovering, clicking,
panning and zooming. These visualization primitives can be
encapsulated as data dependency subgraphs within reactive
models which we call components.

Table I shows a listing of components that can be combined
to easily generate a foundation for a variety of interactive
visualizations. These components encapsulate reactive data
dependency subgraphs that implement the visualization prim-
itives necessary for interactive visualizations. Figure 1 shows
how several of these components can be assembled to create
a general-purpose reactive bar chart.

Figure 2 shows an example of linked views using our
approach. Here we are using a scatter plot with brushing
interaction assembled using reusable components in a similar
fashion to the bar chart shown in figure 1.

III. CONCLUSION

We introduce a novel way to combine elements of functional
reactive programming with the Model View Controller (MVC)
paradigm to create what we call reactive models. These
reactive models allow developers to declaratively specify data

dependency graphs. This kind of abstraction is well suited
for developing interactive visualizations because it drastically
simplifies management of complex data flows and update
patterns.

Future directions for this work will focus on developing
a catalog of reusable visualization components, coupling the
data to currently available public data sources, developing
visualization-centric user interfaces and collaboration. So far
we have applied our technique to bar charts and scatter
plots only, however we intend to also support the following
visualizations: Table, Color Legend, Line Chart, Pie Chart,
Choropleth Map, Parallel Coordinates, Heatmap, Stacked Bar
Chart, Stacked Area Chart, Streamgraph, TreeMap, and Force
Directed Graph Layout.

An open source implementation of reactive models
is available at github.com/curran/model, and
a catalog of example visualizations including bar
chart, scatter plot, line chart and table is available at
https://github.com/curran/model-contrib.

REFERENCES

[1] R. A. Becker and W. S. Cleveland, “Brushing scatterplots,” Technomet-
rics, vol. 29, no. 2, pp. 127–142, 1987.

[2] B. Shneiderman, “Dynamic queries for visual information seeking,”
Software, IEEE, vol. 11, no. 6, pp. 70–77, 1994.

[3] M. O. Ward, “Xmdvtool: Integrating multiple methods for visualizing
multivariate data,” in Proceedings of the Conference on Visualization’94.
IEEE Computer Society Press, 1994, pp. 326–333.

[4] J. C. Roberts, “Exploratory visualization with multiple linked views,”
2004.

[5] D. A. Keim, “Information visualization and visual data mining,” Visual-
ization and Computer Graphics, IEEE Transactions on, vol. 8, no. 1, pp.
1–8, 2002.

[6] L. Anselin, I. Syabri, and O. Smirnov, “Visualizing multivariate spatial
correlation with dynamically linked windows,” Urbana, vol. 51, p. 61801,
2002.

[7] M. Bostock, V. Ogievetsky, and J. Heer, “D3: Data-driven documents,”
IEEE Trans. Visualization & Comp. Graphics (Proc. InfoVis), 2011.
[Online]. Available: http://vis.stanford.edu/papers/d3

http://vis.stanford.edu/papers/d3

	Introduction
	Reactive Visualizations
	Visualization Primitives

	Conclusion
	References

