
GraphUnit: Evaluating Interactive Graph Visualizations Using
Crowdsourcing

Mershack Okoe∗ Radu Jianu†

Florida International University

ABSTRACT

The process of evaluating visualizations can be time-consuming.
Here, we present a design aimed at automating the process of per-
forming quantitative and qualitative evaluations of graph visualiza-
tions by leveraging crowdsourcing, and a set of predefined evalu-
ation modules based on a graph task taxonomy. Specifically, we
allow designers to quickly set up a user study with representative
graph tasks, measurable metrics, and evaluation methods. Our sys-
tem then uses a thin-client architecture to automatically generate
a web accessible user study from our desktop visualization, places
the study on Mechanical Turk, and uses a statistical package to au-
tomatically process incoming results. To evaluate our system, we
performed three concrete evaluation studies, all of which were con-
figured and deployed in less than an hour. We discuss how our
system can be used for automatic evaluations of interactive graph
visualizations, how it can facilitate evaluation of alternative designs
during iterative design processes, and how it could be used to find
good default configurations for graph visualizations.

Keywords: Graph evaluation, crowdsourcing graph evaluations.

1 INTRODUCTION

We explored a design aimed at automating controlled evaluation
studies of interactive graph visualizations by leveraging the Me-
chanical Turk crowdsourcing platform. We evaluate it, and show
its potential for getting quick feedback on graph designs. Perform-
ing evaluation studies for visualizations can be a tedious and time-
consuming task. Crowdsourcing has been shown to be a valid plat-
form for performing visualization experiments [2, 3]. Compared
to lab-based studies, crowdsourced studies provide easy access to
a more diverse population and high number of participants [3]. In
this work, we show that crowdsourcing can be leveraged to auto-
mate the evaluation of interactive graph visualizations. This way,
evaluation studies could be performed more frequently to guide the
design of graph visualizations, for instance between stages of itera-
tive development.

Specifically, we allow a graph visualization developer to quickly
set up a user study with representative graph tasks selected from the
graph task taxonomy of Lee et al. [4]. We automatically generate
a web-accessible user study of the graph visualization, place the
study on Mechanical Turk, and evaluate the results for the developer
automatically using statistical measures that are aligned with the
user study design. We used a thin-client architecture to create web-
accessible content from our desktop based system.

Our contribution lies in introducing a design that leverages
crowdsourcing to simplify the evaluation of interactive graph vi-
sualizations. To demonstrate the potential of the approach, we per-
formed three concrete evaluations all of which were configured and
deployed in less than an hour. Results from one of the studies

∗e-mail: mokoe001@cis.fiu.edu
†e-mail:rdjianu@cis.fiu.edu

showed that users had better accuracy with interactive graphs com-
pared to static graphs.

2 RELATED WORK

In visualization, crowdsourcing has been shown to be a good plat-
form for performing evaluation studies. Notable evaluation studies
include works of Heer et al. [2], and Kosara et al. [3]. These studies
were specific and manually set up.

Our design is aimed at automating controlled evaluation studies
of static and interactive graph visualizations by leveraging crowd-
sourcing. Our implementation leverages a desktop visualization
and thus uses a thin-client architecture to deploy the visualization
to the web, but the principles of our design could easily be extended
to web visualizations.

Our work is most similar to efforts on simplifying the design of
controlled experiments. TouchStone [6] is a platform for design-
ing lab-based controlled HCI experiments, and EvalBench [1] is a
software library that supports lab-based evaluation studies in visu-
alization. Our work was also inspired by TurkIt [5], a toolkit that
leverages crowdsourcing for iterative text editing tasks, but their
approach is more automatic than ours.

3 METHODS

First, to simplify graph visualization studies, we provide an inter-
face where designers can configure the settings for the evaluation
designs. Such settings include: the graph visualizations for the con-
trol and test conditions, whether the evaluation design is within or
between users, and the quantitative and qualitative questions to be
included in the study. We provided representative tasks from the
task taxonomy of Lee et al. [4]. The tasks include topology tasks
(e.g. Are two highlighted nodes connected? Is there a path be-
tween two or three highlighted nodes?), attribute tasks (e.g. Is there
an adjacent node starting with a letter?), and browsing tasks (e.g.
Find the number of nodes on a given path that starts with a letter).
The designer can also select qualitative questions (e.g. rate the dif-
ficulty of the visualization) or define qualitative questions of their
own. Additional configurations for the evaluation include specify-
ing the number of assignments to generate on Mechanical Turk, the
designer’s Mechanical Turk access information, and the reward to
be given to users. On a click of a button, the HIT is created on
Mechanical Turk, and workers accepting the HIT can perform the
tasks on the webserver where the visualization is hosted. Figure 1
shows an example of a graph task.

Second, because our framework leverages a desktop visualiza-
tion development framework, we ensured that graph visualizations
developed on the framework can be made web accessible through a
thin-client architecture. Thus, when the visualization is accessed on
the web, all rendering of the visualization occurs on our servers and
images are sent to the client. Our thin-client achieves up to 10fps
making it easy for users to interact with the visualization without
lag. However, we note that our design principles would work just
as well with web visualizations created in D3, provided an interface
mechanism was developed.

Third, we used methods of designing evaluation studies from ex-
perimental research. As a default dataset, we used a book recom-



Figure 1: An example of a task involving three nodes. On the left
is the question, the controls for answering the question, and a but-
ton for proceeding. On the right is the graph with the three nodes
highlighted.

mendation network (900 nodes, 2500 edges). We created sets of
target nodes for each task type (e.g., pairs of nodes for connection
or path tasks). Depending on the number of questions requested
by the developer, target nodes are selected from these predefined
groups and highlighted in the visualization when the tasks are pre-
sented to the worker. Also, when nodes are highlighted in the visu-
alization as part of a task, the visualization is automatically centered
so that those nodes are in view. When the evaluation is started, the
user is given an instruction about the types of tasks involved in the
study. The user is also guided through a training session involving
2 questions for each type of task involved in the study. During the
training session users are told whether their answers are correct or
not.

In between-user studies, half of the subjects solve the tasks in the
control condition and half in test condition. In a within-user study
all subjects solve the tasks twice, once in the control condition and
once in the test condition. Our design automatically accounts for
learning effects by starting half of the users in the control condition
and the other half in the test condition.

For each user and each task, our implementation records time
and accuracy. Results are saved on the server and upon request they
are automatically downloaded and analyzed using the R statistical
package. So far, we generate boxplots that compare the average
time and accuracy on tasks for the control and test conditions, and
we generate text files containing the results of statistical analyses.
These analyses are correlated with the selected user study design:
for within user designs, a Shapiro-Wilk analysis tests for normality
and is followed by a paired t-test; while for between user designs, a
Kruskal-Wallis analysis is performed.

4 EVALUATION

To evaluate our system, we performed three evaluation studies. The
first evaluation was a between user study involving 40 MTurk work-
ers. Half of the workers performed the tasks with interactivity dis-
abled (control condition), and the other half performed the tasks
with interactivity enabled (test-condition). We used two main tasks:
neib — determine whether two highlighted nodes are directly con-
nected (12 questions), and path — determine whether there is a
direct path between 3 highlighted nodes (8 questions). The graph
visualization used was drawn with the neato algorithm, and we used
a book recommendation dataset (900 nodes, 2500 edges). We mea-
sured time and accuracy. Results from this study showed that users
had better accuracy with interactivity enabled than with interactiv-
ity disabled as shown in Figure 2. The other two evaluations we
performed were within user studies that test how changes in two
graph readability metrics (i.e. node-color, and edge-size) affect
task accuracy. The second study evaluated node-color (green vs.
yellow), and the third study evaluated edge stroke size (2 vs. 6).

For the second and third studies, the questions were similar to the
first study, and users performed the tasks with interactivity enabled.
These three studies were set up in less than an hour and analysed
with a click of a button when tasks were completed by MTurk work-
ers. The results from the second and third studies did not show any
significant difference in user performance.

Figure 2: Boxplots results for the interactive vs. non-interactive vi-
sualization evaluation (where “.Con” and “.Test” refers to the control
and test conditions respectively.

5 CONCLUSION

We explored a design aimed at automating controlled evaluation
studies of interactive graph visualizations by leveraging the Me-
chanical Turk crowdsourcing platform. We provide an interface
where a designer can quickly set up a user study with represen-
tative graph tasks, automatically place the study on Mechanical
Turk, and evaluate the study results using the R-statistical pack-
age. Results from our user studies shows that such a system can
help designers gain quick feedback on their graph designs. Our
current work presents a design and evaluation. Additional work
is needed to transform this design into a useable testing platform.
Future work will include: multiple datasets representative of di-
verse graph topologies and sizes; more comprehensive data report-
ing (e.g. bar charts, and other statistical analysis methods such as
Mann-Whitney and ANOVA); and a way of connecting the evalua-
tion engine to third party web-visualizations. However, our design
represents a first step in automating the process of evaluating visu-
alizations.

REFERENCES

[1] W. Aigner, S. Hoffmann, and A. Rind. Evalbench: a software library
for visualization evaluation. In Computer Graphics Forum, volume 32,
pages 41–50. Wiley Online Library, 2013.

[2] J. Heer and M. Bostock. Crowdsourcing graphical perception: using
mechanical turk to assess visualization design. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, pages
203–212. ACM, 2010.

[3] R. Kosara and C. Ziemkiewicz. Do mechanical turks dream of square
pie charts? In Proceedings of the 3rd BELIV’10 Workshop: BEyond
time and errors: novel evaLuation methods for Information Visualiza-
tion, pages 63–70. ACM, 2010.

[4] B. Lee, C. Plaisant, C. S. Parr, J.-D. Fekete, and N. Henry. Task taxon-
omy for graph visualization. In Proceedings of the 2006 AVI workshop
on BEyond time and errors: novel evaluation methods for information
visualization, pages 1–5. ACM, 2006.

[5] G. Little, L. B. Chilton, M. Goldman, and R. C. Miller. Turkit: human
computation algorithms on mechanical turk. In Proceedings of the 23nd
annual ACM symposium on User interface software and technology,
pages 57–66. ACM, 2010.

[6] W. E. Mackay, C. Appert, M. Beaudouin-Lafon, O. Chapuis, Y. Du,
J.-D. Fekete, and Y. Guiard. Touchstone: exploratory design of experi-
ments. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 1425–1434. ACM, 2007.


