
Improved Post Hoc Flow Analysis Via Lagrangian Representations
Alexy Agranovsky⇤,†, David Camp†, Christoph Garth§, E. Wes Bethel†, Kenneth I. Joy⇤, and Hank Childs†,‡

University of California, Davis⇤
Lawrence Berkeley National Laboratories†

University of Oregon‡

University of Kaiserslautern§

ABSTRACT

Fluid mechanics considers two frames of reference for an observer
watching a flow field: Eulerian and Lagrangian. The former is
the frame of reference traditionally used for flow analysis, and in-
volves extracting particle trajectories based on a vector field. With
this work, we explore the opportunities that arise when considering
these trajectories from the Lagrangian frame of reference. Specifi-
cally, we consider a form where flows are extracted in situ and then
used for subsequent post hoc analysis. We believe this alternate,
Lagrangian-based form will be increasingly useful, because the Eu-
lerian frame of reference is sensitive to temporal frequency, and
architectural trends are causing temporal frequency to drop rapidly
on modern supercomputers. We support our viewpoint by running a
series of experiments, which demonstrate the Lagrangian form can
be more accurate, require less I/O, and be faster when compared to
traditional advection.

Keywords: flow visualization, high-performance computing,
compression, particle advection, pathline interpolation

1 INTRODUCTION

To achieve ever-higher levels of computational power, architects
designing cutting edge supercomputers are forced to make diffi-
cult tradeoffs between networking capabilities, I/O capabilities, and
memory per node, among other concerns. These tradeoffs are the
result of finite budgets; architects play a zero-sum game where al-
locating extra dollars for one area requires reducing the dollars for
another. Over the last decade, architects have increasingly opted to-
ward reduced I/O capabilities. While I/O bandwidth is still increas-
ing on almost every new supercomputer, it is often not keeping pace
with their abilities to generate data.

For the most part, decreased I/O capabilities (relative to compute
power) are not catastrophic for the simulation ecosystem. Simula-
tion codes can drop the frequency with which they store their state
— time slices — to disk, effectively enacting a defense mechanism
that ensures the total time they spend doing I/O remains acceptable.
The result, however, is that the temporal frequency of the data is
reduced. The effect on subsequent analysis of this simulation data,
often done with visualization, varies. It is sometimes largely unaf-
fected, although it can greatly affect the quality of the results.

One strategy to counter-act temporal sparsity is to use in situ
processing. Rather than the traditional post hoc model, where visu-

⇤A. Agranovsky and K. I. Joy are with University of California at Davis.
Email: aagranovsky@ucdavis.edu, joy@cs.ucdavis.edu

†D. Camp and E.W. Bethel are with Lawrence Berkeley National
Laboratory. Email: dcamp@lbl.gov, ewbethel@lbl.gov

‡H. Childs is with the University of Oregon and Lawrence Berkeley
National Laboratory. Email: hank@uoregon.edu

§Christoph Garth is with University of Kaiserslautern, Germany.
Email: garth@cs.uni-kl.de

alization and analysis codes read time slices that a simulation has
stored to disk, in situ processing eschews the disk altogether, and
does its processing as the simulation produces data. In situ process-
ing has become increasingly popular, with many successful usages
in recent years [4, 14, 16, 26, 27]. One of the advantages of in situ
processing is that it can access all of the simulation data, which
has never previously been possible with post hoc analysis. Phrased
another way, where supercomputer trends are leading to temporal
sparsity, in situ processing allows for dramatic increases in tempo-
ral frequency, equal to that accessible in the simulation code itself.

In this paper, we explore particle advection techniques from this
context of temporal sparsity. Particle advection — moving a parti-
cle so that its displacement is tangent to a vector field — is a foun-
dational technique for flow visualization, serving as the basis for
pathlines, line integral convolution [2], finite-time Lyapunov expo-
nents [8], streamsurfaces [11], and many other algorithms. Con-
ceptually, particle advection assumes access to the complete spatio-
temporal data; when faced with increasing temporal gaps, the re-
sulting interpolations can have large errors, which in turn deviates
the trajectory of a particle from its correct path.

We believe that the inaccuracies resulting from temporal sparsity
require investigation into new techniques. With this work, we draw
inspiration from fluid mechanics, which considers two frames of
reference for an observer watching a flow field: Eulerian and La-
grangian. With the Eulerian frame of reference, the observer is at
a fixed position and watches flow go by. This is the frame of ref-
erence traditionally used for advection in visualization. With the
Lagrangian frame of reference, the observer is attached to a particle
and moves through space and time. The concept of the Lagrangian
frame of reference can be applied to visualization by taking a ba-
sis of known trajectories (Lagrangian flows), and then interpolating
new particle trajectories from this basis.

We believe the Lagrangian paradigm is well-suited to the emerg-
ing supercomputing constraints that are driving the usage of in situ
processing. Whereas reduced temporal frequency causes the ac-
curacy of traditional particle advection techniques to suffer, a La-
grangian representation can be calculated in situ, meaning that their
accuracy does not need to decrease. Further, where traditional par-
ticle advection techniques often have to pay significant I/O costs to
process many time slices with unsteady flow, Lagrangian methods
are stored temporally, meaning that unsteady flow analysis can be
performed by reading much less data (i.e., just the necessary flows
from the Lagrangian basis). Finally, Lagrangian analysis can throt-
tle the amount of data stored, by reducing its basis of Lagrangian
flows. While this reduction comes at a cost of accuracy, it can still
be more accurate than the traditional approach when faced with
temporal sparsity. To sum, when compared to traditional process-
ing techniques, Lagrangian analysis has the potential to be more
accurate, faster, and require less data stored on disk.

With this work, we describe a two-phase method that operates
both in situ and post hoc. In the first phase, a Lagrangian basis of
flows is extracted in situ and stored to disk. In the second phase,
new particle trajectories can be explored post hoc by interpolating
from the first phase’s known trajectories. After describing the al-

67

IEEE Symposium on Large Data Analysis and Visualization 2014
October 9–10, Paris, France
978-1-4799-5215-1/14/$31.00 ©2014 IEEE

gorithm in more depth (Section 3), we summarize our hypotheses
about opportunities compared to traditional advection (Section 4),
and then describe an experiment to evaluate its efficacy (Section 5).
Our findings (Section 6) demonstrate that the potential outcomes
motivating our study are realized: it is more accurate, requires less
storage, and improves performance.

2 RELATED WORK

2.1 Traditional Advection
Particle advection is a technique for calculating the trajectory a par-
ticle follows in a flow field. McLouglin et al. recently surveyed
the state of the art in flow visualization [15], and the large majority
of techniques they described incorporate particle advection. Ad-
vection assumes access to a vector field, i.e., a continuous function
over a four-dimensional domain. If x is a spatial location of a point
and t is a time, then the vector field v maps the tuple (x, t) to its
velocity, as v(x, t). For some approaches, visualization techniques
focus on the special case of stationary flows whose vector fields
does not vary over time (“steady state”). With this paper, our focus
is on the general case: transient flows where the vector fields are
time-varying (“unsteady state”).

Advection constructs integral curves, which are continuous func-
tions tangential to the vector field. The curves are solutions to an
ordinary differential equation, and, for an integral curve I, can be
represented as:

d
dt

I(t) = v(I(t), t) (1)

where I(t0) = x0, for a seed point at time t0 and location x0. An in-
tegral curve – commonly referred to as a pathline – encodes the
trajectory of a single mass-less particle, which in turn gives in-
sight into the flow behavior in the area surrounding the particle’s
path. Further, when considering many integral curves throughout
the spatial domain, the entire flow field starts to be revealed, and
is ultimately defined in terms of a flow map. A flow map denotes
the movement of mass-less particles with respect to a vector field
over a given time interval, as depicted in Figure 1. When a flow
is described entirely by its flow map (and not by a vector field as
with traditional advection), then this representation is referred to as
Lagrangian.

2.2 Storing Flow Field Data
One strategy for addressing I/O constraints — while within the Eu-
lerian frame of reference — is to compress time-varying vector
fields as they are generated. Lodha [13] provided a “knob” that
compressed similar vectors into one vector, covering a larger area.
Theisel et al. [24] collapsed critical points and reduced the problem
to mesh reduction. Later, the same authors provided a threshold to
distinguish important features for filtering [23]. These works tack-
led compression by targeting individual time steps. Tong et al. [25]
took a different approach by collapsing N number of simulation

Figure 1: Visual flow map example. The figure shows the mapping
of five particles from start position (within the circle labeled tS) to end
position (labeled tE).

steps into a smaller, K number of time steps, highlighting temporal
features of the data set. With our work, we examine the advantages
that Lagrangian methods offer within the simulation stage for CFD,
by way of decreasing the disk space required to store the flow field
while maintaining high accuracy.

2.3 Lagrangian Methods for Flow Visualization
Lagrangian methods have had a significant presence within the flow
visualization community in the last decade. The most notable has
been the introduction of Lagrangian Coherent Structures (LCS) by
Haller et al. [7,9], which illuminate distinct salient features within a
flow field based on the calculation of stable and unstable manifolds.
Embraced by the fluid dynamics community, focus turned to the
acceleration of these computations for two-dimensional and three-
dimensional flows through GPU acceleration [6], adaptive mesh re-
finement over grid data structures [5, 19], grid advection [20], and
the interpolation over sparse particles [1].

A more recent development in Lagrangian methods has been to
incorporate the Lagrangian view into the standard Eulerian repre-
sentation of a flow field. Jobard et al. [12] presented a Lagrangian-
Eulerian advection scheme which incorporated forward advection
with a backward tracing Lagrangian step to more accurately shift
textures during animation. Salzbrunn et al. delivered a technique
for analyzing circulation and detecting vortex cores given predi-
cates from pre-computed sets of streamlines [22] and pathlines [21].
In both cases, a dense sampling of the flow field is guaranteed by
initially seeding at the center of each voxel on a regular grid and
adding particles over time to fill gaps within the field (defined by a
user set distance metric). Any particles seeded after the initial time
step are also advected backwards to t=0. The authors note that this
pre-processing step may take hours/days depending on the data set.

Hlawatsch et al. [10] use a hierarchical scheme to decrease the
number of integration steps by constructing longer integral lines
from previously computed partial solutions. They discuss the no-
tion of pre-computing a set of Lagrangian-based trajectories and
optimally choosing which of the trajectories to incorporate based
on advection length. This work is most similar to our own, since
it considers the projection of particles, rather than building integral
curves through a series of advection steps. Their work focuses on
utilizing temporal hierarchies of pathlines that overlap in time as
well as effective usage of a GPU, but does not center as heavily
on selection of flows, interpolation, improved accuracy, or the con-
text of in situ calculation. Our work focuses much more heavily
on the latter four and also provides the context of the Lagrangian
frame of reference for conveying the underlying technique. Fur-
ther, while their main focus is on increasing performance, our work
aims at improved performance, greater accuracy, and reduced I/O
when compared with traditional advection.

3 LAGRANGIAN-BASED METHOD

Our approach has two distinct phases.
In the first phase, we extract a basis of known pathlines. This

phase occurs in situ, meaning that the extraction module can ac-
cess all of the spatio-temporal data. This property is particularly
helpful in a Lagrangian setting, since the Lagrangian representation
captures particle behavior over an interval of time. This contrasts
with the traditional technique, which relies on storing time slices,
and thus can less readily make effective use of the extra temporal
resolution from in situ processing. The in situ extraction of basis
pathlines and storage to disk are discussed in Section 3.1.

In the second phase, we calculate arbitrary integral curves, that
is, the trajectories from arbitrarily seeded particles. This phase is
run post hoc, i.e., it enables exploration of the flow field. The only
trajectories calculated are those that a user would request. The in-
tegral curves are calculated by interpolating from the first phase’s
basis pathlines, and this process is described in Section 3.2.

68

The Lagrangian method does not re-construct the original flow
map, M. Instead, it constructs a new flow map, M’, although the
only flows from M’ that are actually calculated are those requested
by users. If M’ is substantially similar to M, then the Lagrangian
method has done a good job reconstructing the field; if it is very
different, then it has done a poor job. We refer to the pathlines from
the first (in situ) phase as basis pathlines, since any flow in M’ can
be reconstructed from them in the second (post hoc) phase — they
span the space of reconstructed flows.

3.1 Extracting a Basis of Flows From the Simulation
Simulation codes advance in time in discrete steps. Restated, the
simulation’s notion of time will advance from time T to time T +D,
typically immediately after a linear solve. We refer to one advance-
ment in time as a cycle. At the end of some cycles, simulations save
out data to disk. We distinguish these cycles with their own term:
file cycle.

The data stored to disk is frequently called a “dump,” “restart
dump,” “time slice,” or “checkpoint.” We do not use these terms,
since they have the connotation of saving the instantaneous state
of the simulation. That description is appropriate for traditional
advection, but the Lagrangian-based method requires data that cor-
responds to an interval of time (as opposed to a slice of time). Fig-
ure 2 illustrates a notional simulation code advancing in time and
the files it saves for both methods.

Tradi&onal*Advec&on* Lagrangian1Based*Technique*
0 6 12* 18* 24*

F0* F6* F12* F18* F24*

0 6 12* 18* 24*

F121>18*F61>12*F01>6*

T=6*

T=12* T=18*

T=24* T=6*

T=12* T=18*

T=24*

F181>24*

Figure 2: Comparison of traditional advection and Lagrangian ad-
vection. In both cases, the example simulation code runs for 24 cy-
cles and outputs data every 6 cycles. With the traditional method,
the output is a ”snapshot” in time of the simulation’s current state (de-
noted ”F0” for the file containing the velocity at time 0, and so on) and
advection occurs by solving ordinary differential equations and doing
spatial and temporal interpolation. With the Lagrangian method, the
output is a set of Lagrangian flows — the pathlines that form the ba-
sis flows — and post hoc analysis occurs by interpolating positions
between the Lagrangian flows. The bottom portion shows a notional
path that a particle may follow and shows what data is needed to per-
form advection. While the trajectories are identical between the two
methods in this example, they will likely be different in practice. The
traditional method has increasing error when the temporal frequency
drops, while the Lagrangian method has increasing error when the
number flows in its basis shrinks.

Another important difference for the Lagrangian-based method
is that its in situ code must run every cycle, so it can advance the
particles for the current time step. This contrasts with traditional
advection, where the simulation does not need to incur any extra
overhead for visualization purposes on non-file cycles.

Table 1 summarizes the differences between the approaches.
There are a variety of ways to extract a basis of pathlines from

the simulation. Selecting a “good” basis will lead to higher accu-
racy, while selecting a “bad” basis will lead to lower accuracy. In

Traditional Lagrangian-based
advection method

Files represent Time slice Time interval
Files contain Vector fields Particle trajectories

Reducing I/O Less time slices Less particles
Increasing accuracy More time slices More particles

Work required None Advecting
during simulation particles
Memory required None Storing

for method trajectories

Table 1: Summarizing the differences from the simulation code’s
perspective between traditional advection and the Lagrangian-based
method. Although the Lagrangian-based method has increased over-
head from running in situ, we hypothesize that it has many advan-
tages as well, and discuss those advantages in Section 4.

Section 3.1.1 and Section 3.1.2, we describe the method we used
in this study, optimized for minimizing storage costs. Future work
involves considering other bases of pathlines and how they affect
the overall accuracy of the reconstructed flow map.

3.1.1 Seeding the Pathline Basis
The controls for choosing our pathline basis were (i) where and
when we placed particle seeds and (ii) how long we allowed a par-
ticle to exist. For our study, we chose to seed particles along a
uniform grid. The particle duration was set as the time elapsed be-
tween file cycles, meaning the duration was equal for every particle
(rather than letting it vary per particle). At the end of a file cycle,
position information is written to disk, the calculated curves are de-
stroyed, and a new set of particles is seeded (again along a uniform
grid), with advection resuming at the next cycle. The process is
repeated for the length of the simulation.

While we chose short durations for our study, longer durations
also have merit. As observed by Hlawatsch et al. [10], a particle’s
trajectory has greater accuracy when following a longer trajectory
versus a series of shorter trajectories, arguably due to the approxi-
mation error that accumulates in the latter. However, longer trajec-
tories create opportunities for new pitfalls. If new particles are not
frequently introduced, then longer-lived integral curves may move
away from certain regions over time, creating regions of the data set
with little to no coverage. This would likely result in poor recon-
structed flow maps in these regions when doing post hoc analysis.
Further, our mechanism for choosing particles was simple: there
was no need to identify regions that have too few integral curves
(and thus more need to be added) or too many (and thus computa-
tion was being wasted). With short-lived particles, these concerns
were mostly mitigated. We also note that the simplicity led to re-
duced storage; if new integral curves are created while previously-
born curves remain, an identification number must be assigned with
each curve to track its information across multiple file cycles. Thus,
storing long-lived integral curves adds an integer per curve, having
an adverse affect on disk space and complicating implementation.
Along the lines of saving on storage, we aligned the integral curves
along a uniform grid because this approach eliminates the need for
explicitly storing the starting position information.

3.1.2 Storing the Pathline Basis
The minimal way to represent an integral curve is with two po-
sitions; a start position and an end position. (This form is likely
acceptable for short-lived integral curves, but not for long-lived in-
tegral curves.) Because we have chosen to align the integral curves
with a regular grid, only the end position must be stored, at a cost of
3 floats or 12 bytes per curve. With this type of file formatting, the

69

Figure 3: Interpolation using the Lagrangian basis. Position values
of pathline x are interpolated from basis pathlines B1 and B2, using
weights w1 and w2, respectively. The weights are calculated based
on the location of all pathlines at ti and then applied at t j to approxi-
mate x j.

Lagrangian representation now uses the exact same amount of stor-
age per file cycle as required by the traditional method when tracing
one particle for every grid point in the mesh. (When tracing one
particle for every eight grid points, it would take one eighth of the
storage, etc.) Again, a file for the Lagrangian method represents an
interval of time. This contrasts with the traditional method, which,
to evaluate velocities at times other than the time slices stored at
file cycles, needs to read the two vector fields that bracket the de-
sired time and interpolate between them. Over an entire time series,
the formatting difference translates to one less file required for the
Lagrangian representation.

3.2 Post Hoc Exploration — Interpolating New Integral
Curves From the Lagrangian Basis

During post hoc analysis, the Lagrangian representation relies on
the interpolation of position information to create pathlines, where
this interpolation between position values can be achieved through
a variety of techniques.

For our work, we have chosen to use barycentric coordinates to
interpolate between integral curve start and end positions, because a
tetrahedron is the minimum convex hull that can be formed around
any point in three-dimensional space. Barycentric coordinates de-
fine a position with respect to the positions of the vertices of the
tetrahedron they describe:

P = AWA +BWB +CWC +DWD (2)

where A,B,C, and D are vertices of the tetrahedron and Wi repre-
sents the volume coordinates, subject to the constraint WA +WB +
WC +WD = 1.

To begin the interpolation process, any arbitrarily placed seed
particle must first be enclosed by a tetrahedron. Instead of convert-
ing the global grid into a tetrahedral mesh, a standard template is
used to describe how a rectangular cell breaks down into tetrahe-
dron, with the enclosing tetrahedron being identified on the fly.

Multiple methods exist for breaking a rectangle into tetrahe-
dron [17] and for our work we have chosen to cut each cell into
5 tetrahedron. Once the appropriate tetrahedron is located, the par-
ticle’s location is written in terms of the tetrahedron vertices, rep-
resentative of integral curve start positions. The volume coordinate
wi determines the weighting that will be applied to the respective
integral curve end positions to interpolate the next position of the
particle. Figure 3 provides a visual two-dimensional example where
two basis pathlines are interpolated to find the position of pathline
x at time t j.

4 COMPARING WITH TRADITIONAL ADVECTION

We hypothesize that the Lagrangian-based method has the potential
to improve on traditional advection with respect to accuracy, I/O
costs, and performance.

4.1 Accuracy
While the accuracy of traditional advection erodes as temporal fre-
quency drops, the accuracy of the Lagrangian-based method is un-
affected. This is because the Lagrangian-based method is calcu-
lated in situ and thus, utilizes information from all time slices of
the data set.

When doing the post hoc interpolation of a new flow, flow field
information will not be explicitly available for all cycles. That said,
the Lagrangian nature of the method reflects the flow behavior in
the integral curve positions. The Lagrangian representation maps
the paths that particles take between file cycles, meaning that, al-
though the path may be wrong for times between the file cycles, it
will be highly accurate for times corresponding to file cycles; fur-
thermore, these (accurate) positions will be used to make the next
steps forward. This contrasts with traditional advection, where er-
rors compound more easily. Figure 4 conveys the two different ap-
proaches creating integral curves from two particles seeded at the
same location, marked L for Lagrangian and A for advection. They
are compared against a pathline B, which has been advected using
the vector field of each cycle in the simulation.

Figure 4: Notional pathline comparison between the Lagrangian rep-
resentation and the traditional approach for particles seeded at the
same location. Pathline A represents an integral curve advected
through vector fields available only at file cycles, while pathline B
uses all simulation vector fields for advection over the same time
frame. Pathline L, interpolated from the Lagrangian basis, is able
to approximate pathline B with higher accuracy than pathline A.

4.2 I/O Costs
If T S is the number of time slices and V F is the bytes associated
with storing the vector field for one time slice, then the memory re-
quired for traditional advection is T S⇥V F . The size of V F is typ-
ically fixed, unless subsampling or other compression techniques
are used. Similarly, T S is typically set by the simulation code. So,
the total memory used for traditional advection is typically fixed
and outside the control of the visualization. Of course, time slices
are sometimes generated just for visualization purposes and, in this
case, T S can be treated as variable.

If T RAJ is the number of bytes to store a particle trajectory of a
single particle for one time interval, NP is the number of particles,
and INT is the number of time intervals, then the memory required
for the Lagrangian-based method is T RAJ ⇥NP⇥ INT . INT , like
T S for traditional advection, is typically set by the simulation code.
T RAJ is also fixed. However, NP is a new control. If I/O costs
are prohibitive — and evidence is accumulating that this is increas-
ingly the case — then the number of particles can be reduced. The
positive effect of this reduction is an I/O savings. The negative ef-
fect, however, is that the basis of Lagrangian flows is reduced and
therefore the accuracy of the post hoc reconstructions will decrease.

70

4.3 Performance
Here we refer to the performance of post hoc calculation of parti-
cle trajectories for flow-based visualization techniques. With tradi-
tional advection, the vector fields are usually arranged such that all
data from one time slice is grouped together. This is not optimal for
unsteady-state analysis, since data from many locations need to be
read. Worse, a typical implementation reads the entire data field for
each time slice, i.e., reads in a time slice, evaluates where a particle
is located within that time slice, advects, discards the time slice, and
repeats for future time slices. With the Lagrangian-based method,
the data is arranged by time. As a result, only the relevant flows
from the basis need to be read in to calculate a particle trajectory.

5 STUDY OVERVIEW

We devised a study to test our hypotheses about the benefits of the
Lagrangian-based method.

5.1 Configurations
The study was designed to provide coverage over three factors:

1. Data reduction (7 options)
2. File cycle intervals (4 options)
3. Data sets (3 options)

We ran the cross-product, meaning 7⇥4⇥3 = 84 tests overall.

5.1.1 Data Reduction
Our data reduction is based off the vector field grid size for one cy-
cle, i.e. 1

1 is the same size as the vector field and 1
64 is one sixty

fourth the size, with a number of particles seeded for every grid
point in the equivalent mesh . We considered seven reduction fac-
tors: 1

1 , 1
2 , 1

4 , 1
8 , 1

16 , 1
32 , and 1

64 .

5.1.2 File Cycles
The number of cycles between file saves can vary between simu-
lations and even with the same simulation on different computer
systems. We considered four different intervals for file cycles: 20,
40, 80, and 160.

5.1.3 Data Sets
We used the following three data sets to evaluate our method:

Arnold-Beltrami-Childress (ABC) - This three-dimensional
time-dependent variant of the ABC analytic vector field is from the
field of dynamical systems theory. The ABC vector field follows
the parameterization of A=

p
3, B =

p
2, and C = 1. This dataset is

simulated for 3000 cycles, with each cycle consisting of a regular
grid with dimensions 256⇥256⇥256.

Double Gyre - This two-dimensional time-dependent double
gyre velocity field has become a common analytical test problem
for techniques involving Lagrangian flow fields. The flow field con-
sists of two counter-rotating gyres with a time dependent perturba-
tion. This dataset is simulated for 3000 cycles, with each cycle
consisting of a regular grid with dimensions 512⇥256.

Jet - The three-dimensional Jet dataset was created using the
Gerris Flow Solver [18]. It is a simulation of a high-speed jet enter-
ing a medium at rest. This dataset contains 2000 cycles, with each
cycle consisting of a regular grid with dimensions 260⇥520⇥260.

5.2 Output
Seven different Lagrangian representations — one for each reduc-
tion factor — are created for each file cycle interval. Also, we cre-
ated an Eulerian representation (vector field) for every cycle. This
was used to obtain the “ground truth” pathlines, i.e., it allowed us
to calculate trajectories with all spatio-temporal data.

We denote the outputs as:

• VC - Eulerian representation (vector field) from every cycle.
• VFC - Eulerian representation (vector field) from each file cy-

cle.
• L 1

X
- Lagrangian representation for each data reduction value

from each file cycle, with X being the reduction factor.

5.3 Error Evaluation
A set of pathlines is created using the Eulerian and Lagrangian rep-
resentations; they are denoted by PC, PFC, and P1

X
. The pathline

sets PC and PFC use a fourth-order Runge-Kutta scheme [3] for ad-
vection and the P1

X
sets use barycentric coordinates for interpola-

tion. For the purpose of quantifying accuracy, PC is assumed to be
perfectly accurate. The pathlines from all other sets are measured
against the pathlines of PC, calculating the average Euclidean dis-
tance between all pathlines within the set. The average distance is
then normalized by the cell size of its source data set, to rule out dif-
ferences between pathlines stemming from the simulation’s spatial
volume.

The number of pathlines in PC, PFC, and P1
X

were large, so that
we could evaluate both the accuracy of the reconstruction, and the
time it took to perform the reconstruction. For the ABC data set,
the number of pathlines was 1.1 million, for the Jet data set, 2.9M,
and for the Double Gyre, ten thousand.

5.4 Runtime Environment
We performed all tests on Hopper, a Cray XE6 at Lawrence Berke-
ley’s NERSC supercomputing center. Each node contains two
twelve-core AMD MagnyCours processors running at 2.1 GHz. All
of our simulation tests used 3,072 cores.

6 RESULTS

In our results, we focus on a comparison between pathlines cre-
ated from a Lagrangian representation and those advected through
the traditional approach, with respect to accuracy and storage costs
(6.1), and also performance (6.2).

6.1 Accuracy and Storage Costs
The number of basis flows is a key control (“knob”) for simula-
tion scientists during the in situ extraction phase. Scientists want-
ing higher accuracy can request more basis pathlines (thus reducing
potential storage savings), or they can request fewer basis pathlines
(thus reducing potential accuracy). Ergo, storage and accuracy are
in tension, and so we present the results for the two together, ac-
knowledging how one rises while the other falls.

As mentioned in Section 5.3, we evaluate error using the Eu-
clidean distance between temporally equivalent positions on the
pathlines for sets PFC,P1

1
� P 1

64
against those in PC. In essence,

the accuracy evaluation measures how closely the post hoc portion
of the method is able to approximate the original flow map. Fur-
ther, our accuracy measure reflects evaluations over a large number
of pathlines distributed throughout the problem domain, making us
confident that it captures underlying trends.

Figure 5 depicts accuracy measurements for all of the data sets.
The x-axis denotes simulation time (in units of cycles), as the ac-
curacy varies throughout the simulation and so the values for dif-
ferent cycles in the simulation need to be plotted separately. The
y-axis is based on our accuracy metric, i.e., comparing pathlines
created with the Lagrangian approach to those created using the tra-
ditional approach. However, the y-axis does not plot the absolute
value of the metric. Instead, each plot is normalized by the accu-
racy of the traditional approach (i.e., PFC), which allows for quick
comparisons with the Lagrangian representation. Specifically, y-
axis values above (or below) one indicate how many times more
(or less) accurate the Lagrangian approach is when compared to the
traditional approach. For visual clarity, the horizontal line y = 1 is

71

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Pr
op

or
tio

na
l E

rr
or

Cycle

ABC Dataset - File Cycle 20

Lagrangian 1/1
Lagrangian 1/2

Lagrangian 1/4
Lagrangian 1/8

Lagrangian 1/16
Lagrangian 1/32

Lagrangian 1/64

0.
00

11
48

0.
00

18
69

0.
00

21
52

0.
00

19
83

0.
00

14
21

0.
00

08
32

0.
00

16
85 0.

00
33

90 0.
00

53
98 0.
00

75
66

0.
00

97
75

0.
01

19
15

0.
01

38
74

0.
01

55
48

0.
01

68
56

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Pr
op

or
tio

na
l E

rr
or

Cycle

ABC Dataset - File Cycle 40

Lagrangian 1/1
Lagrangian 1/2

Lagrangian 1/4
Lagrangian 1/8

Lagrangian 1/16
Lagrangian 1/32

Lagrangian 1/64

0.
00

74
52

0.
00

73
96

0.
00

41
60

0.
01

68
14

0.
03

46
44 0.
05

28
22

0.
06

76
77

0.
07

60
97

0.
07

65
68

0.
07

05
94

0.
06

53
14

0.
07

31
62

0.
09

83
95 0.

13
40

02 0.
17

01
87

 0

 5

 10

 15

 20

 25

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Pr
op

or
tio

na
l E

rr
or

Cycle

Double Gyre Dataset - File Cycle 20

Lagrangian 1/1
Lagrangian 1/2

Lagrangian 1/4
Lagrangian 1/8

Lagrangian 1/16
Lagrangian 1/32

Lagrangian 1/64

0.
00

54
68

0.
01

08
77

0.
01

61
45

0.
02

12
38

0.
02

61
45

0.
03

09
40

0.
03

57
40

0.
04

06
75

0.
04

58
30

0.
05

12
49

0.
05

69
86

0.
06

30
98

0.
06

95
62

0.
07

63
26

0.
08

33
25

 0

 20

 40

 60

 80

 100

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Pr
op

or
tio

na
l E

rr
or

Cycle

Double Gyre Dataset - File Cycle 40

Lagrangian 1/1
Lagrangian 1/2

Lagrangian 1/4
Lagrangian 1/8

Lagrangian 1/16
Lagrangian 1/32

Lagrangian 1/64

0.
04

37
51

0.
08

53
08

0.
12

42
29

0.
16

31
69

0.
20

54
44

0.
25

28
05

0.
30

57
29

0.
36

24
45

0.
42

07
20

0.
47

82
54

0.
53

34
68

0.
58

71
16

0.
64

23
03

0.
70

36
50

0.
77

73
89

 0

 1

 2

 3

 4

 5

 6

 7

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

Pr
op

or
tio

na
l E

rr
or

Cycle

Jet Dataset - File Cycle 20

Lagrangian 1/1
Lagrangian 1/2

Lagrangian 1/4
Lagrangian 1/8

Lagrangian 1/16
Lagrangian 1/32

Lagrangian 1/64

0.
01

22
76

0.
02

03
94

0.
02

63
95

0.
03

24
18

0.
03

88
76

0.
04

57
62

0.
05

30
78

0.
06

07
71

0.
06

90
43

0.
07

81
91

0.
08

81
00

0.
09

88
08

0.
11

01
56

0.
12

21
98

0.
13

48
17

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

40 80 120 160 200 240 280 320 360 400 440 480 520 560 600

Pr
op

or
tio

na
l E

rr
or

Cycle

Jet Dataset - File Cycle 40

Lagrangian 1/1
Lagrangian 1/2

Lagrangian 1/4
Lagrangian 1/8

Lagrangian 1/16
Lagrangian 1/32

Lagrangian 1/64

0.
05

46
50

0.
08

56
96

0.
11

78
97

0.
15

25
58

0.
18

98
14

0.
23

16
72

0.
27

65
69

0.
32

65
22

0.
38

12
92

0.
44

02
66

0.
50

26
66

0.
57

17
60

0.
64

57
37

0.
72

55
63

0.
80

92
57

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

80 160 240 320 400 480 560 640 720 800 880 960 1040 1120 1200 1280 1360 1440 1520 1600 1680 1760 1840 1920 2000

Pr
op

or
tio

na
l E

rr
or

Cycle

Jet Dataset - Comparing Advection with FC 20 to Lagrangian with FC 40 and 80

Lagrangian FC 40 - 1/1
Lagrangian FC 40 - 1/2

Lagrangian FC 40 - 1/4
Lagrangian FC 40 - 1/8

Lagrangian FC 80 - 1/1
Lagrangian FC 80 - 1/2

Lagrangian FC 80 - 1/4
Lagrangian FC 80 - 1/8

0.
03

24
18

0.
06

07
71

0.
09

88
08

0.
14

86
74

0.
21

33
03

0.
29

39
81

0.
39

41
14

0.
50

87
53

0.
64

38
48

0.
78

86
08

0.
95

03
29

1.
13

14
80

1.
32

40
50

1.
52

46
60

1.
73

95
10

1.
97

21
60

2.
21

70
30

2.
47

31
10

2.
75

01
90

3.
03

84
60

3.
34

87
20

3.
67

66
60

4.
00

14
60

4.
35

09
30

4.
72

83
30

Figure 5: Each of the seven sub-figures plot Lagrangian error for a data set and file cycle interval. The error varies as the simulation evolves, so
the error is plotted with respect to the simulation cycle time (on the x-axis). A grouping of bars for a given cycle represent the error for different
reduction factors for the Lagrangian approach during that simulation time. These errors are normalized by the average error for the traditional
approach, and this average error is displayed numerically above the grouping. The horizontal line y = 1 denotes where the Lagrangian and
traditional approaches produce the same error. Bars above that line are more accurate and bars below that line are less accurate.

72

highlighted in each graph. Each cycle has a group of seven bars, de-
noting the normalized error for the sets P1

1
�P 1

64
, from left to right,

respectively. Further, the average error for the traditional approach
is displayed numerically above that cycle’s seven bars.

6.1.1 Arnold-Beltrami-Childress
The top row of Figure 5 shows the ABC data set at file cycles
twenty and forty. A particularly noteworthy feature of both graphs
is the sinusoidal behavior of the error, which is largely due to the
sinusoidal ABC analytical function. Due to the absence of veloc-
ity information for every simulation cycle, the traditional advection
method produces pathlines of a markedly different sinusoidal fre-
quency than the ground truth. In contrast, the Lagrangian represen-
tation allows for pathlines to retain and closely match the frequency
of the ground truth; this disparity causes the sinusoidal behavior of
the error bars shown in the error analysis. Thus, even if the Eu-
clidean distances between the traditionally advected pathlines and
those of the ground truth are closer to one another than the La-
grangian methods, they are nonetheless following a completely dif-
ferent velocity field. While it is well understood that the absence of
all spatio-temporal data affects accuracy with the traditional tech-
nique, we feel this example particularly underscores how inaccurate
this approach can become.

There are many instances in this data where the Lagrangian ap-
proach uses less storage and is still more accurate. For example,
with file cycle forty and one eighth of the storage, the Lagrangian
technique is still more accurate than the traditional technique more
than half the time.

6.1.2 Double Gyre
The second row of Figure 5 displays the error from the Double Gyre
data set. The majority of pathlines rotate about either of the two
gyres and the average error increases constantly over time. This
data set illustrates how drastically the flow field can change within
a small space. Resultantly, when fewer basis flows are used, there
is a sharp decline in accuracy and the range of errors is spread out.
For example, at a file cycle of twenty, pathline set L 1

1
is over fifteen

times more accurate than VFC, L 1
2

is almost ten times as accurate,
and L 1

4
is more than five times as accurate.

The Double Gyre exemplifies that in turbulent areas, accurate
flow field information can be obtained even with high reductions.
In the case of L 1

16
, the Lagrangian approach creates more accurate

pathlines than the traditional approach, even though the traditional
approach uses sixteen times more storage. The Double Gyre chart
for file cycle forty demonstrates that, as the file cycle increases,
even fewer basis pathlines are needed to achieve higher accuracy
than the traditional approach.

6.1.3 Jet Data
The bottom three charts of Figure 5 represent the error analysis for
the Jet data set, in which a central jet shoots upwards from the bot-
tom of the domain. The flow moves very quickly within the jet it-
self, and pathlines that are seeded within this space either leave the
data set or begin to circulate between the jet and the boundary of the
domain. As a result, as the simulation advances in time, the error
levels off, as seen in the bottom three graphs of Figure 5. Regard-
less of file cycle size, pathlines interpolated using the Lagrangian
approach are better able to capture the turbulent and fast-paced mo-
tion that occurs within the jet itself. This effect can be seen towards
the beginning cycles of every chart.

For each data set presented, the Lagrangian representation is able
to retain substantially better accuracy when compared to the tradi-
tional method, and at times, even with significantly less flow field
information. As the file cycle increases, the difference becomes
even more pronounced: the Lagrangian representation retains the

Jet Data Set File Cycle 20 File Cycle 40
Method File # of Total # of Total

Size (MB) Files Size (GB) Files Size (GB)
VFC 402.3 101 39.7 51 20.0

L 1
1

402.3 100 39.2 50 19.6
L 1

2
201.1 100 19.6 50 9.8

L 1
4

100.6 100 9.8 50 4.9
L 1

8
50.3 100 4.9 50 2.5

L 1
16

25.1 100 2.5 50 1.2
L 1

32
12.6 100 1.2 50 0.6

L 1
64

6.3 100 0.6 50 0.3

Table 2: Disk space required to store flow field information from the
simulation. The top row shows the traditional method. Subsequent
rows show Lagrangian representations with various numbers of basis
flows (and thus sizes). The bold values correspond to the amount
of disk space necessary for a Lagrangian representation to create
pathlines of equivalent accuracy as the traditional method. As the file
cycle increases, the Lagrangian representation needs less storage
space to match the accuracy of the traditional approach.

original flow field at a much lower cost. With a file cycle of twenty,
storing basis pathlines taking one eighth of the disk space as the tra-
ditional approach produces comparable accuracy. With a file cycle
of forty, comparable accuracy can be achieved with only 1

64 th the
information.

The final (bottom) plot in Figure 5 compares the errors for the
Lagrangian representations for file cycles of forty and eighty. To fa-
cilitate comparison, the errors are normalized by the same denomi-
nator, specifically the traditional method with a file cycle of twenty.
This contrasts with all other plots in this figure (which normalize
the Lagrangian method at a given file cycle by the error for the tra-
ditional method at the same file cycle). The plots shows that the the
Lagrangian approach creates more accurate pathlines, despite flow
field information being stored less frequently. This is possible be-
cause in situ processing enables access to all spatio-temporal data,
so the pathline basis can be advected using every simulation cycle,
thereby retaining the temporal flow field regardless of file cycle. As
a result, increasing the file cycle is much less detrimental for the
Lagrangian approach when compared to the traditional approach.

Our tests successfully ran up to file cycles of one hundred and
sixty. The results from this longer file cycle (as well as those from
file cycles of eighty) exhibit the same patterns as the shorter file cy-
cles. At a file cycle of twenty, the L 1

16
basis matches the accuracy

of the traditional method; at a file cycle of forty, L 1
64

achieves com-
parable accuracy. The results we obtained for file cycles eighty and
one hundred and sixty agreed with this trend. That is, higher file
cycles appear to need fewer basis pathlines for equivalent accuracy.

Table 2 shows the storage space required to store the Jet data
for the different methods. Once again, the finding is that the La-
grangian representation requires much less disk space to create
pathlines of similar accuracy during the post hoc analysis phase.
Our results only report the storage costs for Jet, since it is the largest
of the three, and the trends are similar across the three data sets.

6.2 Performance

In this section, we analyze two aspects of performance. First, in
Section 6.2.1, we consider the overhead for the in situ extraction of
basis flows. Second, in Section 6.2.2, we consider the time needed
to (post hoc) interpolate new pathlines from the Lagrangian basis
and compare it to the traditional method.

73

Jet Data FC 20 (s) FC 40 (s) FC 80 (s) FC 160 (s)
L 1

1
0.554 0.535 0.587 0.656

L 1
2

0.272 0.283 0.306 0.351
L 1

4
0.163 0.145 0.155 0.179

L 1
8

0.092 0.082 0.083 0.096
L 1

16
0.053 0.047 0.048 0.052

L 1
32

0.033 0.029 0.030 0.031
L 1

64
0.024 0.021 0.022 0.022

Table 3: Time per cycle to extract the Lagrangian basis flows in

situ for different file cycle intervals and reduction factors, measured
in seconds.

6.2.1 Simulation Overhead
Table 3 reports timings for the in situ extraction of basis flows from
the Jet data set. (As Jet was the largest data set, the timings for
other data sets were consistently smaller.) The table shows that, un-
surprisingly, the time to extract the basis flows drops significantly
as the number of flows extracted decreases. Also, when the interval
between file cycles increases, efficiency drops, likely due to sinks
in the flow field causing imbalance in the workload over the proces-
sors.

6.2.2 Creating Pathlines
We compare the computation time of creating pathlines during the
post hoc phase. Again, the traditional approach uses Runge-Kutta
4 for numerical integration, while the Lagrangian approach uses in-
terpolation over barycentric coordinates. The traditional approach
is run on the same setup as the simulation, utilizing 3,072 cores.
The Lagrangian approach, however, uses only one node with 24
threads, utilizing 1

128 th the power of the traditional run (meant to
better exemplify a use case on a local machine). An equal num-
ber of pathlines are created for each analysis run, thereby all L 1

X
runs take a similar amount of time for interpolation with very slight
variability due to neighbor location. We note that this configura-
tion is not perfect: when interpolating few pathlines, fewer cores
may be better (as efficiency may be higher), and, further, when in-
terpolating many pathlines, the I/O costs can be amortized. That
said, we believe the results presented demonstrate the performance
advantages that the Lagrangian approach can yield.

Table 4 shows the pathline creation times for both methods over
all data sets. For 2.9 million pathlines on the Jet data set, the longest
time was 8.83 seconds, with computation time cut in half as the file
cycle doubles. While a fraction of particles are seeded within the
jet plume itself, the majority of particles for our test lie outside of
the jet and remain close to their seed position as time advances.
This creates a condition of fairly equal load balancing among the
nodes during advection. The longest time to create equally seeded
pathlines using the Lagrangian approach takes 31.0 seconds. Even
though the interpolation has 1

128 th the computation power to draw
upon, the computation time takes only between 2.5 to 3.5 times
longer.

The ABC data set is susceptible to load imbalance. As a re-
sult, traditional advection of 1.1 million particles took longer than
the advection of 2.9 million particles in the Jet data set. With the
ABC data set, every area of the domain experiences high velocity
and thus, particles are constantly being shipped across nodes. Con-
sequently, the Lagrangian approach performs faster than the tradi-
tional method, with the longest time taking 8.42 seconds compared
to 10.5 seconds for advection. As expected, the execution time for
the Lagrangian approach is proportional solely to the number of
pathlines to calculate: 1.1M pathlines on the ABC data set took

Jet ABC Double Gyre
File 2.9M Pathlines 1.1M Pathlines 10K Pathlines

Cycle E (s) L (s) E (s) L (s) E (s) L (s)
20 8.83 31.0 10.5 8.42 3.83 .056
40 4.89 15.3 5.83 4.49 1.98 .029
80 2.91 6.97 3.23 2.02 1.08 .014

160 1.67 4.18 1.77 .99 .617 .007

Table 4: Comparison of times, in seconds, for the traditional and
Lagrangian methods to generate sets of pathlines for different data
sets. The traditional method is denoted with an ’E’ (for Eulerian) while
the Lagrangian method is denoted with an ’L’. While the traditional
method is faster in some cases, it had significantly more computa-
tional power to work with, as a result of our experimental configura-
tion.

consistently one third of the time as 2.9M pathlines on the Jet data
set.

For the Double Gyre data set, with its small size, only 10,000
particles are calculated. The timings reflect the toll of communica-
tion costs, with the Lagrangian approach significantly outperform-
ing the traditional method.

7 CONCLUSION AND FUTURE WORK

We have introduced a method for in situ extraction of particle tra-
jectories and subsequent post hoc exploration of flow, all from the
Lagrangian frame of reference. This paradigm is a departure from
traditional advection, which depends on saving time slices of data
and assumes the Eulerian frame of reference. We hypothesized that
the Lagrangian-based method would create opportunities for in-
creased accuracy, reduced storage, and better performance. We then
performed a series of experiments, designed to assess whether the
Lagrangian-based method realized these opportunities. The results
were compelling, and we believe they establish that this method has
significant merit.

While our study indicates the potential utility of a Lagrangian-
based approach, we understand that our method should be viewed
as one instance of a larger family, and that other variations could
lead to even better results. Specifically, we believe alternative ap-
proaches for selecting Lagrangian flows could improve accuracy
and/or I/O savings. Further, we presented a scheme where La-
grangian flows were saved out at regular intervals. This is one way
to accomplish our goal, but there are others. For example, flows
could originate and terminate as needed, to ensure that each flow
added to the basis is minimizing the total error. Finally, we believe
comparisons with the work of Hlawatsch et al. [10], in terms of ac-
curacy, storage, and performance, would be very useful. We plan to
pursue these directions and others in the near future.

ACKNOWLEDGEMENTS

This work was supported by the Director, Office of Advanced Sci-
entific Computing Research, Office of Science, of the U.S. Depart-
ment of Energy under Contract No. DE-AC02-05CH11231, and
was funded in part by the Marie Curie Actions within the EU FP7
Programme under grant #304099. Hank Childs is grateful for sup-
port from the DOE Early Career Award, Contract No. DE-FG02-
13ER26150, Program Manager Lucy Nowell. This research used
resources of the National Energy Research Scientific Computing
Center (NERSC), which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

74

REFERENCES

[1] A. Agranovsky, C. Garth, and K. I. Joy. Extracting flow structures us-
ing sparse particles. Vision, Modeling, and Visualization 2011, pages
153–160, 2011.

[2] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’93, pages
263–270, New York, NY, USA, 1993. ACM.

[3] J. R. Cash and A. H. Karp. A variable order runge-kutta method for
initial value problems with rapidly varying right-hand sides. ACM
Trans. Math. Softw., 16(3):201–222, Sept. 1990.

[4] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. r.
Geveci, M. Rasquin, and K. E. Jansen. The paraview coprocessing
library: A scalable, general purpose in situ visualization library. In
Large Data Analysis and Visualization (LDAV), 2011 IEEE Sympo-
sium on, pages 89–96. IEEE, 2011.

[5] C. Garth, F. Gerhardt, X. Tricoche, and H. Hagen. Efficient compu-
tation and visualization of coherent structures in fluid flow applica-
tions. Visualization and Computer Graphics, IEEE Transactions on,
13(6):1464–1471, Nov 2007.

[6] C. Garth, G. Li, X. Tricoche, C. D. Hansen, and H. Hans. Visualiza-
tion of coherent structures in transient 2d flows. In Topology-Based
Methods in Visualization, Proceedings of the 2007 Workshop, 2007.

[7] G. Haller. Finding finite-time invariant manifolds in two-dimensional
velocity fields. Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 10(1):99–108, 2000.

[8] G. Haller. Distinguished material surfaces and coherent structures
in three-dimensional fluid flows. Physica D: Nonlinear Phenomena,
149(4):248 – 277, 2001.

[9] G. Haller and G. Yuan. Lagrangian coherent structures and mixing
in two-dimensional turbulence. Physica D: Nonlinear Phenomena,
147(3-4):352 – 370, 2000.

[10] M. Hlawatsch, F. Sadlo, and D. Weiskopf. Hierarchical line integra-
tion. Visualization and Computer Graphics, IEEE Transactions on,
17(8):1148–1163, Aug 2011.

[11] J. P. M. Hultquist. Constructing stream surfaces in steady 3d vector
fields. In Visualization, 1992. Visualization ’92, Proceedings., IEEE
Conference on, pages 171–178, Oct 1992.

[12] B. Jobard, G. Erlebacher, and M. Hussaini. Lagrangian-eulerian ad-
vection of noise and dye textures for unsteady flow visualization. Vi-
sualization and Computer Graphics, IEEE Transactions on, 8(3):211–
222, Jul 2002.

[13] S. Lodha, J. Renteria, and K. Roskin. Topology preserving compres-
sion of 2d vector fields. In Visualization 2000. Proceedings, pages
343–350, 2000.

[14] J. F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, and C. Jin. Flex-
ible io and integration for scientific codes through the adaptable io
system (adios). In Proceedings of the 6th international workshop on
Challenges of large applications in distributed enviro nments, CLADE
’08, pages 15–24, New York, NY, USA, 2008. ACM.

[15] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen.
Over Two Decades of Integration-Based, Geometric Flow Visualiza-
tion. In EuroGraphics 2009 - State of the Art Reports, pages 73–92,
April 2009.

[16] K. Moreland, R. Oldfield, P. Marion, S. Jourdain, N. Podhorszki,
V. Vishwanath, N. Fabian, C. Docan, M. Parashar, M. Hereld, et al.
Examples of in transit visualization. In Proceedings of the 2nd inter-
national workshop on Petascal data analytics: challenges and oppor-
tunities, pages 1–6. ACM, 2011.

[17] G. M. Nielson. Tools for triangulations and tetrahedrizations. In Scien-
tific Visualization, Overviews, Methodologies, and Techniques, pages
429–525, Washington, DC, USA, 1997. IEEE Computer Society.

[18] S. Popinet. Gerris: a tree-based adaptive solver for the incompressible
euler equations in complex geometries. J. Comput. Phys., 190(2):572–
600, 2003.

[19] F. Sadlo and R. Peikert. Efficient visualization of lagrangian coherent
structures by filtered amr ridge extraction. Visualization and Com-
puter Graphics, IEEE Transactions on, 13(6):1456–1463, Nov 2007.

[20] F. Sadlo, A. Rigazzi, and R. Peikert. Time-dependent visualization of

lagrangian coherent structures by grid advection. Topological Meth-
ods in Data Analysis and Visualization, pages 151–165, 2011.

[21] T. Salzbrunn, C. Garth, G. Scheuermann, and J. Meyer. Path-
line predicates and unsteady flow structures. The Visual Computer,
24(12):1039–1051, 2008.

[22] T. Salzbrunn and G. Scheuermann. Streamline predicates. Visual-
ization and Computer Graphics, IEEE Transactions on, 12(6):1601–
1612, Nov 2006.

[23] H. Theisel, C. Rossl, and H. P. Seidel. Combining topological simpli-
fication and topology preserving compression for 2d vector fields. In
Computer Graphics and Applications, 2003. Proceedings. 11th Pacific
Conference on, pages 419–423, 2003.

[24] H. Theisel, C. Rössl, and H.-P. Seidel. Compression of 2d vector fields
under guaranteed topology preservation. Computer Graphics Forum,
22(3):333–342, 2003.

[25] X. Tong, T.-Y. Lee, and H.-W. Shen. Salient time steps selection
from large scale time-varying data sets with dynamic time warping.
In Large Data Analysis and Visualization (LDAV), 2012 IEEE Sympo-
sium on, pages 49–56, Oct 2012.

[26] V. Vishwanath, M. Hereld, and M. Papka. Toward simulation-time
data analysis and i/o acceleration on leadership-class systems. In
Large Data Analysis and Visualization (LDAV), 2011 IEEE Sympo-
sium on, pages 9–14, 2011.

[27] B. Whitlock, J. M. Favre, and J. S. Meredith. Parallel in situ coupling
of simulation with a fully featured visualization system. In Proceed-
ings of the 11th Eurographics conference on Parallel Graphics and
Visualization, pages 101–109. Eurographics Association, 2011.

75

