ADR Visualization: A Generalized Framework for Ranking Large-Scale
Scientific Data using Analysis-Driven Refinement
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ABSTRACT

Prioritization of data is necessary for managing large-scale scien-
tific data, as the scale of the data implies that there are only enough
resources available to process a limited subset of the data. For ex-
ample, data prioritization is used during in situ triage to scale with
bandwidth bottlenecks, and used during focus+context visualiza-
tion to save time during analysis by guiding the user to impor-
tant information. In this paper, we present ADR visualization, a
generalized analysis framework for ranking large-scale data using
Analysis-Driven Refinement (ADR), which is inspired by Adaptive
Mesh Refinement (AMR). A large-scale data set is partitioned in
space, time, and variable, using user-defined importance measure-
ments for prioritization. This process creates a prioritization tree
over the data set. Using this tree, selection methods can generate
sparse data products for analysis, such as focus+context visualiza-
tions or sparse data sets.

Keywords: data triage, focus+context, large-scale data, big data,
scientific data, prioritization, adaptive mesh refinement

Index Terms: [.3.1 [Computer Graphics]: Hardware
Architecture—Parallel processing; 1.3.3 [Computer Graphics]: Pic-
ture/Image Generation—Viewing algorithms

1 INTRODUCTION

Figure 1: ADR, Analysis-Driven Refinement, using the maximum
value of a partition as the importance measurement for a 3D as-
teroid simulation. A partition is refined if the maximum value meets
an importance criteria. Data priority, or importance, is the refinement
depth of the data in the priority tree.
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Large-scale data implies that there is insufficient computational
or human resources to fully process all of the data. If all of the data
will not be processed, decisions must be made as to which data will
be processed, which data will be looked at first, and which data
will be culled or ignored. For example, in time-evolving, large-
scale simulations, a common way to save I/O bandwidth is to store
time step data at periodic intervals. This is an explicit culling of
the time series, deciding a priori which parts of the data are im-
portant enough to use in later analysis. Likewise, a focus+context
visualization, like automatic camera guidance, is able to focus the
user’s attention, saving them time. The viewpoint is positioned to-
ward more important data, while less important data might never be
looked at.

The common thread in both of these examples of data analy-
sis workflows is that data elements are ranked with respect to each
other, and some data is identified as more important and thus chosen
for resource access while others are not. Analysis-Driven Refine-
ment (ADR) visualization is a generalized framework for prioriti-
zation of large-scale data for applications in analysis in resource-
constrained environments. Our method prioritizes a data set by cre-
ating a prioritization tree, which is a relative ranking of the data
by recursive partitioning, as seen in Figure 1. The first key concept
is that ADR creates an analysis-driven Adaptive Mesh Refinement-
like (AMR) grid, using user-defined importance measurements for
data partitioning. This analysis grid spans space, time, and vari-
ables, and is independent of the source data set’s original grid.

The second key concept in ADR is the ability for end-users to de-
fine custom measurements for partitioning the tree. User-specified
measurements define what is important in a data set and determines
whether recursive partitioning should continue. Examples of mea-
surements include minmax, standard deviation, entropy, or value
range to determine if data is important enough to be partitioned fur-
ther. Importance measurements can also be domain specific, such
as counting the number of eddies in an ocean simulation partition,
or a halo census in a cosmology data partition.

The third key concept in ADR is that the resulting prioritization
aids selection algorithms in generating sparse data products for ex-
plicit data budgets, such as in situ data triage and focus+context vi-
sualizations. This prioritization system specifically improves upon
previous streaming architecture research [1], by describing a gen-
eralized framework for prioritizing data. Thus, our contribution
is a framework for prioritizing large-scale scientific data by: 1)
an AMR-like partitioning over a data set, independent of its grid,
which 2) utilizes user-defined measurements during partitioning,
and 3) is applicable to many different triage, analysis, and fo-
cus+context visualizations that have data budget constraints.

2 RELATED WORK

In ADR visualization, the priority tree creates a high-dimensional
refinement grid, which is very similar in appearance to an Adap-
tive Mesh Refinement (AMR) grid. AMR is a technique for im-
proving the runtime of scientific simulations by changing the mesh
cell size and computation requirements for parts of the computa-
tional domain. AMR has been shown to be essential in a wide
variety of scientific fields, including fluid dynamics [16], astro-
physics [8][14], cosmology [20][21], computer graphics [13] and
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many others. Berger er al. [2][3] introduced the approach of block-
structured AMR, which covers the computation domain with a hi-
erarchical data structure of Cartesian grids and subgrids. Another
popular approach for AMR is using finite-element models on un-
structured meshes, an approached used by Lohner [12] for compu-
tational fluid dynamics. For scientific simulations which employ
AMR, one possibility is to use the AMR grid generated by simula-
tion for visualization and analysis purposes. One problem with that
approach, for ADR, is the AMR grid represents the finest resolution
required over all variables.

ADR narrows down subsets of data based on importance mea-
surements, and the result is similar to feature detection and extrac-
tion. Silver and Zabusky [19] use a flood fill algorithm to extract
features from a 3D volume. Post er al. [17] use a similar technique
for feature extraction and then represents those features as icons.
More recently, Tzeng and Ma [23] use machine learning techniques
on the problem of feature extraction in order to reduce the need for
manual intervention. The system learns to extract features with cer-
tain properties through limited user interactions. Ji and Shen [10]
use earth mover’s distance to find the globally best match for track-
ing features over time. A survey of feature extraction and tracking
techniques for flow fields is given by Post et al. [18].

Data selection and triage are important techniques for large-
scale data, which can drastically reduce the amount of data writ-
ten to disk or transmitted over a network. Indeed, one primary
goal of ADR is to provide a flexible prioritization framework for
data triage. Tong et al. [22] developed a method to select salient
timesteps of a time-varying dataset using dynamic time warping.
Their method, though, finds a globally optimal solution and thus
requires all timesteps to be available at once. Because of this, their
method is not suitable for in situ uses. Woodring et al. [29] utilize
statistical sampling techniques to create a level-of-detail represen-
tation of a cosmology simulation. Modeling a time-varying data
set as a 3D array with Time Activity Curves (TAC) is the approach
used by Fang et al. [7] to locate user specified regions and timesteps
of interest. Biswas et al. [4] used mutual information to find groups
of variables in a multivariate data set which had high information
overlap.

Similar to our work, Wang et al. [25][26] partitioned volume
data in image space based on entropy to guide level-of-detail selec-
tion. Our framework is more general, as it is applied in data space,
which allows many other types of measurements, and selection al-
gorithms to be used. Another work by Wang et al. [27] calculated
an importance curve for each block of a time-varying data set by
using conditional entropy, and clustered the data using these impor-
tance curves.

Another goal of ADR visualization is focus+context visualiza-
tion, to save scientist and analyst time. Viewpoint selection has
been studied extensively for several different types of data. In 2005,
Bordoloi and Shen [5] generated informative views for volume ren-
dering by using a viewpoint goodness measure, which included us-
ing entropy and taking into account the transfer function. View-
points for vector fields were evaluated by Lee er al. [11] by calcu-
lating the entropy of a vector field, and using a maximal entropy
projection framebuffer to obtain a view dependent measure. ADR
can utilize several different measurements for automatic camera
placement. Muehler et al. [15] produced viewpoints of anatomical
structures from medical images. Several parameters, including oc-
clusion and viewpoint stability were used in their method. Vazquez
et al. [24] calculated viewpoint entropy by measuring the distribu-
tion of projected mesh polygons to find good cameras views for
image-based rendering.

3 ADR: ANALYSIS-DRIVEN REFINEMENT

Figure 2 displays an overview of the ADR visualization framework.
The first step, and primary focus of this paper, is the organization
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Figure 2: An overview of the ADR visualization framework.

step, where input data is ranked by partitioning them into a prior-
itization tree. An example of a spatial partitioning can be seen in
Figure 1. A large-scale data set is recursively refined, or split, into
partitions. For each partition, an importance measurement is cal-
culated, and the measurement is tested against importance criteria.
If the measurement passes the importance criteria, the partition is
split and each resulting child partition is recursed on. An example
would be refining a data set based on maximum temperature as the
importance measurement, and setting the importance criteria as a
user-defined temperature threshold. For each partition, the maxi-
mum temperature is calculated, and then the partition is refined if
the maximum is greater than the user threshold. The relative im-
portance between the resulting data partitions is determined by the
depth at which the partitions occur in the tree. Construction of the
prioritization tree is described in Section 3.2.

The second step in ADR visualization, the selection step, uses
the resulting prioritization information to generate data products,
such as sparse data sets or focus+context visualizations. The selec-
tion step is discussed in Section 3.7. Examples of the selection step
include using the prioritization tree to determine automatic camera
placement, or choosing only the most important data partitions to
write to disk.

3.1 Data Model
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Figure 3: Different views for representing the same time-varying data
set, where a,b € v are a set of variables at a position in space, x,
y, and z, over time ¢: (A) “traditional” spatio-temporal view, (B) table
(matrix) view, and (C) high-dimensional projection using star coordi-
nates.

The primary focus for ADR visualization is to prioritize data
generated by large-scale scientific simulations that are run on su-
percomputers. Therefore, the input data set to ADR visualization is
assumed to be a time-varying, multivariate data set with spatial in-
formation. In particular, ADR is designed to be run in sifu, so that
data may be prioritized for triage operations that occur while the
data is still in supercomputer memory. For sake of clarity, we will
describe the abstract data model in several different ways, which
are shown graphically in Figure 3. The most familiar data model
for a time-series simulation (with a set of discrete time steps, ?) is
spatial blocks over time (¢; in ¢). The set of spatial data points, per
time step #;, have position (x, y, z coordinates) and field values (a set
of variables, v, per point).

Alternatively, we can describe this spatio-temporal data set as a
table or matrix, with ¢ columns and r rows. The ¢ columns describe
the x, y, z, t, positions of all the data in space-time, along with
their v values per point (row), for a total of |v| +4 columns. The



total number of rows (points) r is equal to |¢|*n, where n is the
average number of data points per discrete time step in ¢. Finally,
the data in the table can also be described by a set of |¢| x n points
in |v| 4+ 4 dimensional space, where the coordinates of a point p is
v|—1
(xp,yp,zp,tp,vg...v‘p‘ ).

3.2 Prioritization Tree

A data set is recursively split into subpartitions, and Figure 4 shows
an illustration of this applied to the three data models, which will re-
sult in a hierarchical tree representation. The core algorithm that we
use is a high-dimensional partitioning, similar to a kd-tree, where
high-dimensional data points are recursively partitioned into hyper-
cubes, inspired by stratification and latin hypercubes [29]. Our par-
ticular axis partitioning order is time groups (¢ dimension) first, fol-
lowed by variable groups (v dimensions), and ending with space
(x, y, and z dimensions) groups. Divisions (partitions) are decided
by user-defined, analysis-driven importance criteria, which decide
whether partitioning should continue. This is similar to how a tradi-
tional spatial kd-tree will continue to spatially subdivide data until
it reaches stopping criteria.
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Figure 4: One hierarchical partitioning of the data set, shown in (A),
(B), and (C), across the three data models. (D), the priority tree, is
equivalent to this partitioning.

Our partitioning algorithm is different from a simulation AMR-
octree or a visualization kd-tree in two primary ways: 1) we use
analysis-driven criteria to control partition refinement, and 2) we
partition the time and variable “dimensions” in addition to the spa-
tial dimensions. Considering a recursive partitioning of a spatio-
temporal data set, the root of the tree represents a cluster contain-
ing all of the data in a data set. Nodes further down the tree are
data points contained within a space-time-variable partition. This
new grid is created independently of the source data grid, which is
based on refinement using the importance measurements. Differ-
ent example measurements are discussed in Section 3.6. In general,
our ADR construction forms a high-dimensional tree of data points,
similar to kd-trees for k-NN search.

3.3 Top-Down Partitioning
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Figure 5: An illustration of the top-down algorithm for the spatial par-
titioning of a single time-variable partition. Low values are blue, and
high values are red. The importance measurement is the maximum
value of the partition. The importance criteria is whether the max-
imum value is close to the global maximum, within a user-defined
percentage.

In constructing the prioritization tree, we have developed two
methods, a top-down and bottom-up approach. The top-down ap-
proach is easier to explain, while the bottom-up approach is more
practical from an implementation point-of-view. For now, let us
assume that we have all of the data from a time-series, spatial, mul-
tivariate data set. In a top-down fashion, the priority tree is created
by applying time importance measures to the data set, and partition-
ing it by time values, if the data passes the criteria measurements.
Variables, and then space, are partitioned in a similar manner, us-
ing variable importance measures and space importance measures.
Partitioning stops if the importance measurement does not pass the
importance criteria. Figure 6 describes the steps involved in the
top-down approach, while Figure 5 shows a concrete example of
the spatial partitioning process.

1: given: a data set of one partition
2: constraint: apply partitioning in sets of dimensions: time,
variable, and space order
3: if partition is larger than smallest permissible for a dimension
then
4:  calculate the importance measurement of the current parti-
tion
if the measurement passes the importance criteria then
split the partition into child partitions
recurse on step 3 with each child partition
end if
end if

e

Figure 6: The top-down approach for partitioning

The top-down algorithm will recursively partition a data set by
the time dimension, until recursion cannot continue (i.e., either we
have reached the smallest time partition size or the time importance
criteria has failed). Then, it will partition the data set by variables,
and then space, until partitioning cannot continue in those dimen-
sions, either. The importance measurements and criteria, used in
steps 4 and 5, need to be supplied by the user. They define how the
data set is partitioned according to analysis-driven criteria, such that
we are able to use several time, variable, and space importance mea-
surements and importance criteria. For now, we restrict ourselves
to axis aligned splitting, such that we form hypercube partitions in
|v| +4 dimensional space (i.e., we split and create ranges of values
on a dimension). Note that any general type of split is acceptable in
the ADR framework.

The top-down approach is easy to understand, but it has multiple
drawbacks when trying to implement it in parallel. Typically for
a large-scale simulation, the data for a particular discrete time step
will be distributed over several processes. Therefore, to calculate
the importance measurements in situ, importance values or the data
itself need to be gathered from all of the processes in a partition.
For example, calculating the importance value for a time partition
requires gathering all data from all of the processes that the time
steps are distributed over. Secondly in the top-down approach, the
data set will be read and communicated multiple times (in the worst
case, as many times as the maximum depth of the priority tree), as
the importance measure has to be recalculated after every splitting
step. Due to these drawbacks, we developed an alternative, bottom-
up construction.

3.4 Bottom-Up Merging

An alternative approach is to build the prioritization tree from the
bottom-up through merging partitions together, which amounts to
a result equivalent to the top-down approach. One requirement for
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Figure 7: An illustration of the bottom-up merging approach for the
smallest spatial partitions of a single time-variable partition that is
analogous to Figure 5. White dotted borders show parent partitions
being created from merging child partitions. Child partitions only re-
main in the tree if the parent meets the importance criteria.

this bottom-up algorithm is that all importance measurements must
be order-independent reducible (i.e., associative). This is not a strict
constraint for the top-down construction. Figure 8 describes the
steps for the bottom-up approach and Figure 7 shows an example
of creating the spatial partitioning of the tree.

1: given: a data set split into time-space-variable partitions of the
smallest permissible

2: for each partition, calculate importance measurements

3: constraint: apply merging in sets of dimensions: space, vari-
able, and time order

4: while the tree is not complete do
5.  create a parent partition, merging valid child partitions
6:  reduce the child importance to create parent importance
7. if parent importance meets the importance criteria then
8: keep the children of the parent in the tree
9: else

10: prune the children, the parent is a now a leaf

11:  endif

12: end while

Figure 8: The bottom-up approach for partitioning

In this method, rather than recursively splitting, we pre-split all
of the data into the smallest partitions permissible, and gather them
into a priority tree. This is quite similar to a hierarchical, bottom-
up clustering approach, where a data set is split into the smallest
elements and then continually merged, until the tree is complete. To
make our algorithm equivalent to the top-down splitting approach,
we evaluate whether the merging of two children would result in a
parent that would have split in the top down case (step 7). If not,
we prune the children from the tree.

The computational advantage, primarily for parallelism, is that
the points in a data set are only read once to generate subsequent im-
portance values. The importance value of a parent partition is calcu-
lated from the children through associative reduction of importance.
For example, if the importance measurement is maximum temper-
ature, then the measurement for a parent partition can be found by
finding the maximum among the all importance measurements of
children partitions. A top-down, splitting approach will have to
constantly rebalance and communicate data importance values to
processors that share data within an ADR partition, which signif-
icantly slows down the computation. Also, the bottom-up parallel
communication happens in pairs, while the communication pattern
in the top-down parallel approach will have scatter-to-many. As
mentioned earlier, this does require that the importance measure-
ments are associative for bottom-up merging, but this is rarely a
serious constraint, particularly for our test cases.

3.5 Incremental Time Handling

Strictly speaking, time partitioning cannot happen as described in
prior sections for the majority of time-varying simulations. This is
because generally only one discrete time step is available in situ,
due to time-evolving simulations and supercomputers having lim-
ited memory. Therefore, evaluating the importance of a discrete
time step needs to be done in an out-of-core, best-effort, and/or
heuristic manner. The splitting/merging step for the time dimen-
sion has to be done with this expectation in mind, such that the data
from an entire time step may never be saved, due to the selection
(triage) step.

Approaches we have taken use streaming, out-of-core, statisti-
cal calculations to determine time partitions. For example, we have
experimented with time-series data models (not described in this
paper) using the current time step and past time steps. This is used
to predict if we need to create a new time partition, or if the cur-
rent time step belongs to a previous partition. Another problem is
that future time-series data (as well as past data, which may not be
saved) is also not known at a particular instance in time. Therefore,
we must use a best-effort approach to predict if the current time
step will be important, relative to future data, using projections of
past statistical time-series data. Time partitioning is difficult, and
likely an unsolvable problem in the context of time-series simu-
lations. Despite this, there are many different strategies for time
partitioning that could be developed in the future.

3.6 Importance Measurements and Importance Criteria

The prioritization tree construction relies on importance measure-
ments and importance criteria to determine if a partition is signif-
icant enough to subdivide. This framework is flexible enough to
allow many types of importance measurements to perform arbitrary
data refinement. For computational efficiency, spatial importance
measurements, in particular, ought to be associative to be able to
apply our bottom-up parallel implementation. Importance measure-
ments are categorized into three types, based on the level of the tree
currently being evaluated: time axis, variable axes, or space axes.

One special case is that an explicit stopping criteria should be
used in any ADR implementation: stop refinement if the priority
tree data structure is growing too large. The priority tree is an ad-
ditional data structure that will temporarily increase the memory
footprint, but this is a tradeoff to intelligently lower the cost of what
a simulation actually saves to disk. Note that the priority tree is a
temporary data structure, because after it is created, it is immedi-
ately used to triage and select data, and then discarded afterwards.

The temporary memory cost can be controlled by a variety of
factors: maximum recursion depth, size of the priority tree to mem-
ory allocation ratio, maximum number of leaves, maximum subtree
size, etc. For most use cases, we do not actually need the inner
structure of the priority tree, and only care about the leaves. Thus,
the tree data structure size can be reduced through depth-first, tail
recursion in the top-down implementation. In the bottom-up con-
struction, we merge bounding hypercubes, which means if left un-
controlled we will roughly double the size of the memory footprint
in the worst case. That is the same memory overhead footprint as
in the top-down method in a worst-case, tail-call optimized imple-
mentation that only keeps leaf hypercube bounds.

3.6.1

Modulo Time Index: This is the typical time selection algorithm
employed by most scientific simulations, where time steps are saved
at periodic intervals. The importance measurement for this calcu-
lates the time index, and the criteria is whether the index is modulo
m. The drawback for this is that it does not inspect the time-series
data, and just marks each mth time step as important.

Entropy Change: We calculate the entire entropy of all of the
data in a time step. The importance criteria is whether the difference

Time Importance Examples



between the entropy of the current time step and a previous impor-
tant time step exceeds an absolute delta in bits. This allows us to
detect large-scale changes in the distribution of values in a time-
evolving simulation and use those time steps as partition markers,
as shown in Figure 9.

Asteroid Timestep Importance

0 160 260 360 460 500
Timestep

Figure 9: Incremental time partitioning for an asteroid impact simula-

tion by measuring change in entropy. Out of the 500 time steps, they

were grouped into 65 time partitions.

3.6.2 Variable Importance Examples

Kolmogorov-Smirnov: We generate the histograms for a variable
and keep the last histogram that met the importance criteria. The
importance is the Kolmogorov-Smirnov (K-S) distance between
the two histograms. The criteria is met if the distance exceeds a
threshold. In this case, the current histogram for the variable is sig-
nificantly different from last histogram of the variable. Figure 10
shows examples of variables marked as important over time by us-
ing the K-S distance.

Ocean Salinity Timestep Importance: K-S Test
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Ocean Temperature Timestep Importance: K-S Test
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Figure 10: An ocean climate simulation, showing variable refinement
over time, using the Kolmogorov-Smirnov distance. Out of 365 time
steps, 48 salinity and 61 temperature variable partitions passed the
importance criteria, and were refined further in space.

Top N Mutual Information: Using the work introduced by
Biswas et al. [4], we are able to rank variables relative to each other
based on clustering them by the amount of mutual information con-
tained among the different variables. Using the mutual information
graph in their method, we assign a rank to each of the variables de-
pending on the total amount of information overlap in a cluster. The
importance criteria picks the top ranked variable from each cluster,
which is the most informative variable.

3.6.3 Spatial Importance Examples

Shannon Entropy: Information entropy measures the apparent
randomness or predictability of a set of data. Figure 11 shows an ex-
ample of using entropy as a spatial importance measurement, with
partitioning occurring when the entropy is relatively high.

Value Range: Prioritizing user-specific values allows the data to
be ranked based on values of interest. Figure 12 shows an exam-
ple of spatial partitioning of data using maximum value and user-
selected values of interest.

Feature Census: Any domain-specific feature measurement
coupled with an importance criteria can be used in priority tree con-
struction. For example, the Okubo-Weiss (or Lambda-2) parameter,

Figure 11: Spatial partitioning using entropy as the importance mea-
surement. The importance criteria is whether entropy is relatively
high. The top figure shows the refinement of the entire spatial domain
of an ocean simulation, while the bottom figure shows a zoomed in
region of the same refinement.

for eddy detection in ocean simulations [28], can be used to priori-
tize data based on the eddy census meeting a threshold. Similarly,
other features, such as the number of halos in dark matter cosmol-
ogy simulations or curvature surface count in seismic data, can be
used to prioritize a data set.

3.7 Data Triage and Filtering: The Selection Step

Once the organization step has completed and the prioritization tree
has been built, the selection step is performed. Selection algorithms
walk through the prioritization tree to generate sparse data products.
This is where the triage takes place, as the data has been ranked, and
it is up to the selection step algorithm to determine which data to
keep, based on the priority.

Depth in the priority tree describes the relative importance of
data, i.e., the data within a partition deep in the prioritization tree
has passed the importance criteria more often than data which is
present at a shallower part of the tree. Therefore, the most important
data, as determined the by the priority tree, is the data in the leaf
partitions.

The basic tree-walking algorithm for data selection is to walk
the leaves of the priority tree with depth as the priority value of the
partition. The selection step method defines what data to save and
what data products to generate from the leaves. Below, we provide
several data product generation examples and describe how the data
is selected and stored from the leaves of the priority tree.

Raw Data Storage: Typical scientific simulations will store “vis
dumps,” or raw data every few time steps for post-processing visu-
alization and analysis (see Modulo Time Index in Section 3.6.1).
With ADR, we can have data-introspective control over raw data
storage by choosing to save time steps and/or variables which have
passed the analysis-driven criteria. For example, Figures 9 and
10 show time steps and variables that have passed entropy and
Kolmogorov-Smirnov importance criteria, respectively. In these
cases, we can trigger raw data storage to disk, rather than in pe-
riodic intervals, to store only one time step or variable per partition.

Camera Selection: In focus+context visualization, important
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Figure 12: Spatial partitioning utilizing different temperature impor-
tance measurements for the ocean simulation data set. The top fig-
ure uses the global maximum value, while the bottom figure uses
three user-selected values of interest. A partition passes the impor-
tance criteria if the values in the partition are within a threshold of the
target importance values. Notice that the partitioning is different.

data points are highlighted for the user to save time or highlight
data points that may be obscured. In ADR, one way to define focus
areas is to choose the spatial partitions corresponding to the lowest
leaves in the tree. To visually focus on these partitions, we can cre-
ate camera bounds around clusters of the lowest leaves in the tree,
as seen in Figure 13. In this example, we prune higher leaves from
the tree and spatially cluster the remaining leaves to form groups
for camera positioning.

Figure 13: An example of producing camera placements using ADR.
Tree partitions whose level are less than a threshold are filtered out,
while the remaining partitions are clustered using K-means. The
bounding boxes of the resulting spatial clusters form camera bounds,
with four clusters shown.

Partition Database: The ADR priority tree algorithm essen-
tially builds an index for the data, as the data is sorted by their
position in the tree (depth, space, time, and variable). Each leaf has
a bounding hypercube that defines the unique range of the data in
the partition, and the priority tree is a search tree for that data. Us-
ing this indexing, we can store the data directly in a database [6, 9].
The search keys for those data points are the partition bounds from
the priority tree.

Table 1 shows the size of a database through different storage
schemes for ocean climate data in an SQLite database. The three
schemes shown are: 1) store all of the data in a partition (just use the

Disk Usage for Database Schemes

Max Depth | Leaves | Full Data | Compress | Sample
6 58 1300MB | 583MB | 6.2 MB
10 423 1300 MB | 582 MB 17 MB
14 1486 | 1300 MB | 582 MB 46 MB
18 2753 | 1300MB | 612MB | 159 MB

Table 1: Disk usage for ADR partitioned ocean climate data that is
stored in an SQLite database. The data in each partition is stored in
the database, indexed by the depth in the tree and bounds of the par-
tition (space, time, and variable). The Full Data column is the size of
the database if all the data in a partition is stored. The Compress col-
umn is the size if the partition data is compressed with gzip, and the
Sample column is the size if a random sample is taken per partition.

priority tree indexing), 2) compress the data in each partition, and
3) randomly sample data from the partitions, equivalent to stratified
random sampling seen in [29].

Streaming Visualization: Ahrens et al. [1] noted that many dif-
ferent priority schemes could be used for prioritization of stream-
ing data. ADR visualization, by providing a framework for defin-
ing importance and priority, is a generalization of the prioritization
methods used in that work. In their work, they primarily used spa-
tial closeness to the viewing position for the selection of stream-
ing data. We can provide the same camera position prioritization,
through selection and ordering of partitions. We sort the leaves of
the priority tree by the distance from a viewing position, and serve
them in that order. This assumes the data has been partitioned into
regions of interest. An alternative way of doing this is to directly in-
corporate distance as the priority measurement, and serve partitions
based on depth ranking.

4 COMPUTATIONAL PERFORMANCE

We have written a parallelized prototype of ADR visualization,
and tested it with two different data sets, shown in various figures
throughout the paper. Since the intent is to work in situ, we per-
formed scaling studies on the priority tree construction to show that
it is efficient and can be run in conjunction with a simulation. One
data set is ocean climate simulation data from the Parallel Ocean
Program (POP), a tenth of a degree, high-resolution eddy resolv-
ing simulation. The native simulation grid is a structured resolution
of 3600 x 2400 x 42 single floating-point data, which is roughly
1.4GB per variable. Four variables were used in our studies, with
365 simulated time steps.

In our implementation we use a hybrid top-down and bottom-
up strategy, where partitioning of time and variables is performed
top-down, to “trim” the priority tree. Then, we apply the bottom-
up merging approach to create the spatial partitions. This hybrid
method works well with how parallel simulations are set up to run,
which increase incrementally over time and and are distributed in
space over processes. In this case, we scan the data three times,
once per time partitioning (globally once, but incrementally over
time), once per variable partitioning, and once for spatial partition-
ing.

In Figure 14, strong scaling of the top-down and bottom-up
priority tree construction for spatial partitioning is shown. The
bottom-up construction runs very quickly, approximately in 1 to
2 seconds, even at low processor count, due to only needing to
calculate measurements once. The bottom-up reduction allows us
to save computational time, as the measurement is aggregated (re-
duced) from leaves in the priority tree. On the other hand, the top-
down construction is slow in comparison, approximately 100 sec-
onds, due to several drawbacks: 1) it has to repartition the data at
every level of the tree 2) it has to communicate more often, per-
forming much more data movement between processors, and 3) the
importance measurement is recalculated, at every level of the tree.
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Figure 14: Strong scaling of the spatial partitioning with one time
step of the ocean climate simulation. Both top-down and bottom-up
methods are shown. The importance measurement and criteria are
information entropy.

In Figure 15, we show the weak scaling of constructing the prior-
ity tree using top-down and bottom-up methods. Here, the effects of
communication and repartitioning is shown between multiple pro-
cessors in the top-down construction. In the top-down construction,
as the number of processors double, the amount of data which needs
to be moved between processors also doubles. This is because the
data set needs to be repartitioned between processors at every level
of the tree. On the other hand, the bottom-up construction has a
small amount of data communicated at each step, and only between
pairs, due to pair-wise tree reduction. Top-down in the worst case
will move nlogn data per time step while the bottom-up will only
move plogp data per time step, where p < n, p is the number of
processors, and 7 is the number of data points per time step.
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Figure 15: Weak scaling of the spatial partitioning with one time step
of the ocean climate simulation. Both top-down and bottom-up meth-
ods are shown. The importance measurement used is information
entropy. Note that top-down weak scaling cannot be run after a cer-
tain processor count due to lack of memory.

5 CONCLUSION AND FUTURE WORK

We have described our prioritization framework for large-scale data
triage and focus+context visualization. It provides an analysis-
imposed structure on top of scientific data, independent of the
source grid. The prioritization tree can then be used for selection of
data in resource constrained situations. Embedded movies of time
selection and camera selection on an exploding asteroid simulation
can be seen in Figures 16, 17, 18, and 19.

The primary future work required for this research is that the
precise amount of data resulting from the prioritization can not be
known a priori. The amount of triage is controlled by importance
criteria, but it does not directly control the amount of data that will

pass the priority test. This is due to the time-series nature of simu-
lations, and it is impossible to predict the future amount of data that
may pass the importance criteria. One possible way to circumvent
this problem is that it may be viable to estimate the amount of data
triaged based on past importance criteria and simulation parame-
ters.
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Figure 16: Movie of exploding asteroid simulation with no selection
methods.
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Figure 17: Movie of exploding asteroid simulation with time selection.
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