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ABSTRACT

With dental imaging data acquired at unprecedented speed and res-
olution, traditional serial image processing and single-node storage
need to be re-examined in a “BigData” context. Furthermore, most
previous dental computing has focused on the actual imaging ac-
quisition and image analysis tools, while much less research has
focused on enabling caries assessment via visual analysis of large
dental imaging data. In this paper we present DENVIS, an end-to-
end solution for cariologists to manage, mine, visualize, and ana-
lyze large dental imaging data for investigative carious lesion stud-
ies. DENVIS consists of two main parts: data driven image analysis
modules triggered by imaging data acquisition that exploit parallel
MapReduce tasks and ingest visualization archive into a distributed
NoSQL store, and user driven modules that allow investigative anal-
ysis at run time. DENVIS has seen early use by our collaborators
in oral health research, where our system has been used to pose
and answer domain-specific questions for quantitative assessment
of dynamic carious lesion activities.

Keywords: dental computing, visual knowledge discovery,
MapReduce

Index Terms: I.6.8 [SIMULATION AND MODELING]: Types
of Simulation—Parallel; H.5.2 [INFORMATION INTERFACES
AND PRESENTATION]: User Interfaces—Graphical user inter-
faces

1 INTRODUCTION

Detecting dental caries at the earliest stage and assessing the dy-
namic activities of carious lesions has become one of the most ac-
tive research areas in cariology. By quantitatively monitoring car-
ious lesions over time and correlating variables of interest, cariol-
ogists desire a deep understanding upon how carious lesions de-
velop, progress, and can be treated. To support this goal, emerging
technologies for diagnosis of dental caries (e.g., microfocus com-
puted tomography (µCT) and Cone Beam CT (CBCT)) have been
developed that enable cariologists to acquire dental imaging data
at unprecedented quantity and quality [1]. For example, many re-
search efforts have focused on actual imaging data acquisition, im-
age analysis tools, or 3D reconstructions over computed tomog-
raphy slice stacks. While cariologists now can collect massive
amounts of high-resolution imaging data, they still lack efficient
and intuitive means to investigatively explore data at scale and pose
domain-specific questions. The ever increasing size of imaging data
has suggested our re-examination of image analysis and storage in
a “Big Data” context. Furthermore, when proceeding to the next
step we have an even more challenging task: to allow cariologists
to perform investigative caries analysis over a large number of seg-
mentations and derived dental structures.

Our task in this paper is to present such a visual analysis tool
for cariologists to conduct investigative carious lesion studies over
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large collections of dental imaging datasets. Our major contribu-
tion is on the interactivity and effective integration of techniques
from MapReduce-based fast carious lesion assessment, data-driven
distributed storage for visualization archive, and template-assisted
visual computing interfaces that are well-suited for various carious
lesion assessments.

2 MOTIVATION

Figure 1: (a) Dental CT. (b) Examples of image analysis and derived struc-
tures. The first row: a series of image segmentation techniques used to extract
tooth crown — 1© binary gradient mask �→ 2© dilated gradient mask �→ 3©
binary image with filled holes �→ 4© cleared border image �→ 5© segmented
image with object smoothened �→ 6© extracted dental crown contour. The sec-
ond row: extracting dental pulp — 1© binary image with thresholding �→ 2©
extracted interior holes �→ 3© extracted dental pulp contour with removal of
small objects. The third row: extracting dentin surface — 1© binary image with
thresholding �→ 2© extracted interior hole �→ 3© extracted dentin surface with
removal of small objects. (c) Carious lesion segmentations at various thresh-
old levels: corresponding to each threshold level, pixels with the right amount
of gray-scale loss are considered to be part of the carious lesions. (d) Visual
analysis for carious lesion assessment. When addressing various threshold
levels used in the carious lesion detection, volumetric models are assigned a
surface color keyed to their levels of mineral content loss.

Assessing caries activity has traditionally been limited to eval-
uating patients live in the chair and by subjective clinical methods
(i.e., visual or tactile inspection). By combining new imaging tech-
nologies with image analysis and visual computing methods, which
accurately detect lesions over cross-sectional images, we can pro-
vide visual analysis tools that can in principle improve on carious
lesion assessment. This improvement is possible because, for ex-
ample, dental scans (e.g., µCT) can provide low-level details over
each single slice, however, it is nearly impossible for cariologists
to perform useful studies by manually checking a large number of
images slice by slice. A visual analysis tool, where image-based
“micro”-level information is turned into “macro”-level volumet-
ric model, can greatly reduce the necessary effort for cariologists
to adopt computational methods in carious lesion assessment. We
can therefore use the same methods to help us understand and an-
alyze the much more complicated cases with multiple specimens
and variables of interest (which arise naturally in longitudinal ex-
periments and mineral content distribution studies.) If geometry-
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based assessment is added to describe the quantitative measures of
our derived dental variables (e.g., the area or volumetric size of a le-
sion, or the distance between a lesion and the dentin), one can pose
domain-specific questions without necessarily having to use visual
and tactile inspections at all; when used in combination with statis-
tical analysis in the format of curve/bar charts, the tool can enable
cariologists to base their reporting on derived information from a
large number of dental images by providing only the most relevant
methods in a clear way.

3D Example. To create a visual representation of a human
tooth, we typically obtain dental CT scans out of each specimen
(see e.g., Fig. 1(a)), extract contours that represent various types
of dental structures, and construct a standard 3D computer graph-
ics representation of the result (see e.g., the extraction and recon-
struction of dental crown, pulp and dentin surface in Fig. 1(b)). In
this way the 3D information can be generated for various dental
structures. We may then, in effect, depend on the second order ef-
fects of our practical experience with 3D structures to reconstruct a
3D tooth structure in our mind. However, the 3D models for cari-
ous lesions that we are considering can be very interesting: on one
hand, they may progress or reverse over time; on the other hand,
cariologists often report their findings by checking carious lesions
corresponding to various threshold levels. Fig. 1(c) shows an array
of carious lesion segmentations corresponding to mineral content
levels between 5% loss and 30% loss (by 5% increment), with dif-
ferent surface color keyed to the level being studied. The contours
and regions of our interest, the logical series of segmentation steps,
and some of the problems they induce are as follows:

• Dental Crown — Fully reconstructing dental crown is useful
when lesions’ 3-dimensional locations need to be analyzed and
can provide an accurate way to align and compare lesions on 2D
surface images with those on 3D reconstructed images. Dental
crown is well visible with great contrast from background, and
can be generally detected with the edge and sobel operators. The
contour segmentation starts with an initially segmented dental
crown contained in a binary mask (step 1©), with lines of high
contrast in the image. These lines do not quite delineate the out-
line of the dental crown. Compared to the original image, we
see gaps in the lines surrounding the object in the gradient mask.
These linear gaps can be removed if the sobel image is dilated
using linear structuring elements. To fulfill this, we create ver-
tical structuring elements followed by horizontal structuring el-
ements. The dilated gradient mask shows the contour of dental
crown quite nicely, except holes in the interior (step 2©). The
segmentation can be improved by filling the holes (step 3©), re-
moving connected objects on border (step 4©), and smoothening
(step 5©) respectively (see the key steps in the 1st row of Fig. 1(b)
with step 6© representing the extracted tooth crown contour).

• Dental Pulp — In the 2nd row of Fig. 1(b) are the major steps to
extract dental pulp, which is a variable of interest in many mea-
surements, e.g., the minimum distance from the dentin to lesions
in vivo. We observe that dental crown, pulp and the background
image have observable gray-scale contrast and through thresh-
olding we can transform the gray-scale image into a binary one
to facilitate contour segmentation. The typical procedure starts
with the binary image after thresholding (step 1©). Next we ex-
tract the interior holes (i.e. tooth pulp) within the tooth crown
(step 2©). Remained residues are considered components with
no reasonable pixel sizes and are further removed. The resultant
dental pulp segmentation is shown as step 3© in the 2nd row of
Fig. 1(b).

• Dentin Surface — Dentin surface is yet another variable of inter-
est and accurate construction of dentin surface can quantitatively
reveal how lesions progress (e.g., from staying in the enamel to

extending into the dentin). The 3rd row of Fig. 1(b) illustrates
the processes to extract the dentin surface in a non-interrupted
scenario, which is similar to dental pulp segmentation.

• Carious Lesion — Leveraging the above segmentations, carious
lesions can be fully segmented. Lesions in the enamel typically
correspond to pixels with gray-scale 5% less than the surround-
ing healthy enamel, and those extending into dentin 5% less than
surrounding healthy dentin. By thresholding pixels in the enamel
and in the dentin respectively, we can extract carious lesions that
are in the enamel and in the dentin.

• Putting All Together — Finally, as suggested in Fig. 1(d), we
can explore a more complex 3D representation that reveals all
quantitative information and relative spatial relationship of den-
tal concepts and structures: this is the very first step that we shall
present in this paper – visual computing methods that can be used
to fully assess carious lesions and their activities.

Data Challenge. The visual computing methods in principle
are sufficient to allow us to explore carious lesions in fully con-
structed 3-dimensional tooth structures. In practice, to navigate
from observation to findings and to the most appropriate therapeu-
tic solution in a situation with multiple variables and phenomena
of interest, cariologists need to draw on scientific knowledge from
very large dental imaging data. This naturally arise in one such lon-
gitudinal study shown in Fig. 2(a), where each of a collection of 95
tooth specimens were adopted in a multi-phase dental study using
a remineralization1/demineralization2 model (e.g., 3-day deminer-
alization in the 1st phase, 6-day remineralization in the 2nd phase,
then 4-day remineralization in the 3rd phase, and finally 6-day rem-
ineralization in the 4th phase). Furthermore, dental imaging data
in oral health research are often collected from multiple modalities
which adds to the visualization and analysis difficulty. The example
dataset used to illustrate our work was collected from three imaging
systems for various purposes of lesion assessment:

• µCT slices — acquired over four phases in the longitudinal
study, using SkyScan R© Microtomography system with a 2.25
µm spatial resolution; around 4,000 CT scans are obtained from
each tooth specimen at each phase.

• Quantitative Light-Induced Fluorescence (QLF) surface images
— recorded from a QLF camera at a speed of 1sec per image; 16
images were obtained from each tooth specimen at each phase.

• Infrared thermal surface images — recorded from an infrared
camera at a speed of 1

113 sec per image; 400 images were ob-
tained from each tooth specimen at each phase.

How to perform investigative analysis and effectively discover
new knowledge from rich and large dental imaging data poses a
compelling challenge. Assume that there are N specimens assessed
in a longitudinal study over P time points, and K properties can
be extracted from each of M acquired dental images, we will have
N × P × K × M temporal variables. With the advance of image
acquisition techniques and more fine-grained assessment of cari-
ous lesions, we anticipate N, P, K and M to increase continuously.
As a concrete example, we currently acquire 4,000 µCT images
from a single tooth specimen at each time point of the longitudi-
nal study. Using a desktop computer with an Intel Pentium-4 3.20
GHz processor, it takes approximately 3.7 seconds to fully process
a single image, i.e. extracting all structures of interest, and 4.1
hours to process the whole image stack (i.e. 4,000 images). More-
over, the storage cost is nontrivial and it takes roughly 1.2 GB (i.e.

1dental treatments to help restore the mineral content of tooth tissues
2a process to reduce the content of mineral substances in tooth issues
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Figure 2: One typical experimental setting used in our longitudinal caries le-
sion studies. (a) Three types of dental imaging data were acquired during a
4-phase dental experiment. (b) Quantitative light-induced fluorescence (QLF)
images, (c) µCT slices, and (d) Infrared thermal images. µCT technology en-
ables very detailed images of tooth structures to be taken in slices, QLF and
infrared thermal images indicate dental caries on single surface images. The
cross-sections of demineralized enamel on µCT slices show an observable
gray-scale difference from that of healthy enamels. Similarly, carious lesions
appear dark on QLF and white on infrared thermal images when viewed. This
is based on the principle that a demineralized tissue limits the penetration of
light due to excessive scattering of photons entering the lesion with conse-
quent limitation to the change of a photon being absorbed and fluorescence or
infrared remitted.

300 KB * 4,000) to store segmented images for a single specimen.
Hence, distributed processing and storage become a requirement
rather than an option.

Visual Analysis of Large Dental Imaging Data. Al-
though a handful of dental computing and computational caries as-
sessment efforts exist([6, 11, 12, 15]), they do not offer explicit
guidelines on how to link user-driven interactive visual analysis
of large data volumes with data-driven scalable image processing.
Moreover, caries assessment tools should allow one to perform in-
vestigative analysis and pose domain-specific questions, which has
not been a focus in previous efforts. Based on our analysis of these
challenges, we propose a set of design principles that can guide how
to implement a visual analysis tool that can transform large dental
imaging data to knowledge discovery:

1. Data-driven large-scale processing — Given the scale of the
data and the time complexity of image segmentation, scalable
image processing needs to be applied when extracting various
structures of interest from raw datasets. Furthermore, cariolo-
gists’ online analytics are mostly read-only rendering and vi-
sualization operations applied to extracted structures, thus the
large-scale processing can be conducted offline, triggered by
data acquisition. In addition, cariologists are domain scientists
rather than experts in distributed systems, therefore we would
like to design the scalable image processing workflow to be au-
tomated and totally transparent to cariologists. Derived struc-
tures are made available for analytics once processed and will
populate a data list widget in client user interfaces.

2. User-driven investigative analysis — To understand the carious
process and to create effective caries treatments, cariologists de-
sire an iterative knowledge discovery process. The user interface
should provision clean exploratory interfaces for cariologists to
analyze and correlate carious lesion phenomena. For exam-
ple, cariologists often want to perform lesion analyses through

easy creation of various assessments, develop hypotheses from
assessment reports in both visual and statistical formats, pose
domain-specific questions by issuing visual queries and etc.

3. Loosely coupled server-client architecture — To make our sys-
tem easily extendable, modules should interface with each other
in a loosely-coupled fashion and through well defined inter-
faces. We like to think of our design intuitively as existing in a
server-and-client structure. For instance, the service agreement
between the data store and visual-analysis server, and that be-
tween the server and client interface, are all defined as RESTful
web services. This gives us flexibility on module update, e.g.,
switching from a relational database to a NoSQL store.

3 SYSTEM OVERVIEW

Our system consists of two main parts (see Fig. 3): data driven
scalable image processing is offline and triggered by imaging data
acquisition, while investigative analysis module is online and user-
driven at run time. All services provisioned by modules are exposed
in the form of RESTful web services. We implement a visual analy-
sis tool (DENVIS) in a client/server architecture for cariologists to
perform various carious lesion assessments.

Within the scalable image processing and data store mod-
ule, µCT imaging data are processed once acquired with parallel
MapReduce [4] tasks (see 1©) and all resultant data, e.g., segmented
images and derived structures (see 2©) are ingested into Mongo
DB [9], a distributed NoSQL store (see 3©). QLF and infrared
thermal images do not need further processing and are directly in-
gested into MongoDB. Upon completion of processing, data are
made available to user-driven module for online analysis (see 4©).

At run time, the user initializes data requests by interacting with
DENVIS client, which allows one to conduct various analysis, e.g.,
template-based assessment, interactive visual analysis, longitudinal
evaluation, visual queries and etc. To avoid the performance bottle-
neck brought by a single server, DENVIS server employs multiple
hosts to distribute the workload evenly across machines through
Domain Name System (DNS) and this load-balancing procedure is
totally transparent to both DENVIS server and client. The typical
interaction flow between end users and DENVIS is as follows: step
1© — the user opens DENVIS client, which upon start first queries
DENVIS server through the listdata web service to list available
datasets, DENVIS server in turn asks MongoDB for metadata of
datasets and returns results to DENVIS client, which in turn lists
available datasets in a data list widget; step 2© — the user selects
a dataset for analysis and issues a request to DENVIS server, e.g.,
finding the distance between the carious lesion and the dental pulp;
step 3© — DNS (not shown in Fig. 3) directs the request to one of
the server hosts that share the same service name of DENVIS web
services. The chosen server host reads geometries of the carious
lesion and the dental pulp from mongoDB, calculates the distance
between the two and generates the visualization and statistics; and
step 4© — the server host sends the visualization/statistics back to
the user and results are displayed on DENVIS client.

4 IMPLEMENTATION MODELS AND METHODS

We now turn to our main objective, which is to leverage MapRe-
duce for large-scale dental image processing and volumetric model
generation, and then how these derived structures together with var-
ious types of surface images are explored and analyzed in inves-
tigative carious lesion assessment using DENVIS software. Our
fundamental techniques are based on a wide variety of prior art,
including the use of MapReduce for simplifying data processing on
clusters [4], the computational analysis methods for caries detec-
tion on dental CT and surface images (e.g., QLF) [1], and variants
on visual query and template-assisted interfaces in information vi-
sualization systems [2, 7].
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Figure 3: System overview. DENVIS consists of two main parts: data driven or offline large-scale image processing modules (left, purple) are triggered by imaging
data acquisition, while visualization/user-driven or online investigative analysis modules (right, green) are active at run time. Dental imaging data are processed
in parallel with MapReduce and all generated data (e.g., segmented images and derived structures) are stored in Mongo DB, a distributed NoSQL store. At run
time, the user initializes data requests by interacting with DENVIS client, which enables the user to conduct template-based assessment, interactive visual analysis,
longitudinal evaluation, visual queries, etc. (cf. Fig. 5). Data flow is denoted as numbered red circles while interaction flow as numbered blue circles.
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Figure 4: The MapReduce task that extracts structures of interest, e.g., dental
crown and pulp, dentin surface, and carious lesions of different mineral lost lev-
els. In Map phase, for each µCT image, image segmentations are performed
to extract contours of dental crown and pulp, and dentin surface, and thresh-
olding is performed to identify carious lesions of different mineral loss levels
(e.g. by 5% interval). In Reduce phase, contours and lesion areas belonging
to the same image stack are “stacked” together to produce geometries. We
note that extracted contours/lesion areas need to be “stacked” following the
correct order as how they were sliced in the original specimens. We modify Vi

as a two-element tuple (seqNum, segmentedVariable) where seqNum speci-
fies the order of the µCT image within its image stack and can be determined
from the image filename. By this means, we can enforce the correct order in
the reduce phase.

4.1 Scalable Image Processing and Geometry Genera-
tion

In the data driven modules, dental imaging data are pushed to a
MapReduce cluster for immediate processing once acquired. The
basic idea is that segmentation algorithms operate on each image of
a specimen image stack independently, and a strucuture/geometry
derived from a single image stack is independent of other stacks.
Hence, the whole process can easily fit into MapReduce’s loosely-
coupled parallel framework, which centers around two user-defined
functions that represent a problem domain:

• Map(Di) → list(Ki, Vi)

• Reduce(Ki, list(Vi)) → list(Vf )

In simple terms, Map is a function which, given an input data
value Di, produces a list of an arbitrary number of key/value pairs.
Reduce is a function which, given a single key and a list of associ-
ated values, produces a list of final output values Vf . Given a Map
and a Reduce function and an input dataset D, applying MapReduce
to the entire dataset follows a general pattern:

• Divide the dataset into individual data values Di.

• Apply Map(Di) to each value, producing many lists of key/value
pairs list(Ki,Vi).

• Gather all data produced by Map operations and group them by
key Ki, producing lists of associated values list(Vi).

• Apply Reduce(Ki, list(Vi)) to each key Ki and associated list of
values list(Vi).

A lesion assessment based on analyzing µCT images can there-
fore be expressed with the MapReduce programming model. Ta-
ble 1 describes the mapping of our data types in a longitudinal le-
sion assessment to those parameters in MapReduce’s model. We
use structureID, a 2-element tuple of form (imageStackID, struc-
tureTypeID), to identify a structure of interest in the longitudinal
study. imageStackID recognizes which specimen this extraction
belongs to, and structureTypeID recognizes which dental structure
(e.g., crown, pulp, dentin, or lesion) this extraction represents. Now
that we know Map is followed by a grouping/shuffling phase to
group intermediate results by key, we can leverage this process to
generate a set of distinct structures of interest, e.g., the geometry of
the tooth crown of a specimen at a specified phase in a longitudinal
study. If Map generates STRUCTUREIDS as intermediate keys Ki,
the grouping phase that follows can assemble all values associated
with each distinct structure as an input to Reduce. Likewise, since
Reduce produces its final output by aggregating all values Vi asso-
ciated with a key Ki, we can choose Vi to represent a contour/lesion
area segmented from a single µCT image which is then “stacked”
in Reduce to produce a final geometry for each structure.

Table 1: Data types in MapReduce tasks.

D Whole µCT imaging data
Di A single µCT image
Ki STRUCTUREID
Vi Segmented contours/lesion regions from a µCT image
Vf (STRUCTUREID, geometry) pair

Creating assessment on a µCT image dataset using a MapRe-
duce framework would result in following steps and Fig. 4 shows
an overview of this process:

• Apply our Map function to an image, producing key/value pairs
of structureIDs and segmented variables.

• Gather all intermediate key/value pairs produced by Map and
group by key. Since we use structureIDs as keys, the result of
this step will be a each distinct structure paired with a list of
segmented variables (i.e. contours or lesion areas belonging to
the same image stack).
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(a)
(b)

(c)

(d)

Figure 5: DENVIS client enables an interactive visual computing of large dental imaging data in carious lesion dental studies. (b)-(d) Analyzing QLF images using
DENVIS client’s image computing template in three simple steps: 1© load data source �→ 2© define two patches �→ 3© specify view mapping. (c)(d) The generated
visual and statistical views as assessment results.

• Apply Reduce to each grouped result. Reduce will stack seg-
mented variables of each structure in correct order to produce
ordered pairs containing each structureID and its associated ge-
ometry.

Since MapReduce excels at processing a small number of large
files instead of a large number of small files. In the implementation
we pack the µCT images into a small number of large binary files
before actually being processed. This preprocessing step is per-
formed in parallel as well through a MapReduce task. We note that
only µCT images need to be processed; QLF and infrared thermal
images are directly ingested into MongoDB.

4.2 Visualization Archive
The large-scale imaging data not only pose challenges to compu-
tation but also to storage. We employ MongoDB, a distributed
NoSQL data store to host segmented µCT images, QLF and in-
frared thermal images, and derived structures. Compared to tradi-
tional relational databases, NoSQL stores provide flexible schema
design and better fault tolerance and performance [3]. For the con-
cerned scalability, we can add storage nodes to MongoDB to ac-
commodate more imaging data without stopping the online service.
We wrap MongoDB’s low-level data access APIs as RESTful web
services so that data can be ingested into and read from it easily.

4.3 Quantitative and Interactive Analyses Using DENVIS

The user-driven investigative analysis module is based on a
client/server architecture. As shown in Fig. 5, DENVIS client has
two major display components in the frontend: an imaging data
viewer and a visual computing dashboard. The data viewer is a dig-
ital media player that allows users to access raw images and their
segmentations. The visual computing dashboard is the main tool
that allows one to create caries lesion assessment and explore the re-
sultant visual and statistical representations. When users adjust the
queries, sensitivities, and specificities for an active assessment, the
two display windows will be synchronized. There are three display
areas in our visual computing dashboard. Datasets processed by
data-driven modules are displayed in a tree widget in the upper left
corner and are organized in a hierarchy following the temporal or-
der in the longitudinal study. Users can select which ones they will
import into the computing environment, create and combine various
assessments using the visual templates provided in the upper right
corner. Occupying the central area we have a visualization panel at
the top and a statistics viewer at the bottom. The statistics viewer
is the place to display statistical results, often in the format of bar
or line charts. The visualization panel generates image or volumet-
ric representations that correspond to the desired assessments being

performed. Within the visualization panel, multiple views can be
created if needed, e.g., when generating an array of 3D images as
the representation of a longitudinal assessment. In this way one
can generate various visual analyses to ask domain-specific ques-
tions, such as the mineral distributions of a tooth specimen, or the
3D-time representations of dynamic carious lesion activities. DEN-
VIS client also provides various interactive functions to allow easy
queries and measurements of areas, volumes, and distances among
variables of interest, which we will discuss more later. Upon receiv-
ing DENVIS client’s requests, DENVIS server retrieves correspond-
ing data from MongoDB, performs necessary computation for visu-
alization and statistics, and finally sends results back to the client.

4.3.1 Carious Lesion Assessment By Templates
Although cariologists may have clear domain-specific questions re-
garding their data, they can be novices when it comes to visualiza-
tion and visual analysis, and naive as to how machine computation
can support their investigative analysis needs. In investigative anal-
ysis, cariologists need to explore multiple visual data representa-
tions from diverse data sources and apply iterative analysis speci-
fications in established assessment procedures. We feel interactive
visual templates are very suitable for such scenarios. A visual tem-
plate can be implemented to incorporate the sequence of steps to
form valid caries lesion assessments with continuous visual feed-
back as the final outcome of users’ choices.

QLF Analysis by Image Assessment Templates. QLF
is a dental diagnostic tool for in-vivo and in-vitro quantitative as-
sessment of dental caries lesions, dental plaque, bacteria activity,
calculus, staining, and tooth whitening. Once a QLF image is cap-
tured, the next stage is to analyze the lesions and produce a quan-
titative assessment of the demineralization status of the tooth. The
basic idea is to manually use a “patch” to define an area of healthy
enamel and identify pixels corresponding to a threshold of fluores-
cence loss. These pixels appear dark when being viewed, and they
form the lesion of interest in carious lesion studies. Now we can
begin to see how to exploit an interactive visual template in QLF
assessment to facilitate this visual computing process. The logical
series of steps in using image computing template are as follows:

• Interactively create two patches to define healthy and lesion
enamels. The interactive process involves using two user-
sketched patches to define areas of healthy enamel around the
lesion of interest (see e.g., the blue patch for healthy enamel and
the red for lesion in Fig. 5(b)).

• Reconstruct surface image. DENVIS server uses the pixel values
of the healthy enamel to reconstruct the surface of the tooth and
then subtracts those pixels which are considered to be the lesion.
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(a)

(b) (c) (d) (e) (f)

(g) (h) (i) (j)

Figure 6: Typical interaction flow for generating multi-threshold volumetric assessments. (a) The volumetric assessment template allows users to choose data
source, select static visual structure, and define visual mapping for a variety of threshold levels. (b)-(e) The user enables visual structures in an order of dental crown,
dental pulp, and a reconstructed lesion with a 5% gray-scale loss. (f)-(i) More threshold levels are activated to show the mineral distributions in the lesion. (j) Barplot
representation of the mineral distribution corresponding to threshold levels between 5% loss and 30% loss by 5% increment.

• Generate quantitative analysis using threshold levels. This is
controlled by a series of thresholds of fluorescence loss specified
by the user for assessments of various purposes. For instance,
when the threshold is generally set to 5%, this means that all
pixels with a loss of fluorescence greater than 5% of the average
healthy value will be considered to be part of the lesion. With the
visual template, one can specify a color map where each individ-
ual threshold level is keyed to a unique color representation.

• Output visual and statistical results. Once the pixels have been
assigned “healthy enamel” or “lesion”, DENVIS server then out-
puts the visual representation by overwriting the pixels in the
colors chosen by the user in the visual mapping step (see e.g.,
Fig. 5(c)) and sends the result back to client. Area measure-
ments of the lesions are calculated in mm2, corresponding to the
whole sequence of threshold levels. See Fig. 5(d) for an exam-
ple of generated statistical view using the widely-used barplot,
which indicates a decrement of lesion areas when corresponding
to greater fluorescence loss in the image.

Using image computing template, one can load in a QLF image
of a tooth that has been captured, and generate a quantitative visual
analysis of the demineralization status with just a few mouse clicks.

Exploit Volumetric Assessment Templates. Oftentimes
cariologists need to go beyond a tooth surface image, and look into
the tooth structures. This can be done with volumetric assessment
template. DENVIS client has been designed and developed under
the assumption that cariologists may have no previous knowledge
of what visualization methods and representations are possible for
different types of segmentations. The volumetric assessment tem-
plates aim to make the sequence of steps fairly simple to follow.
Volumetric assessment is based on computing a large number of
images and incorporating iterative analysis specifications. The pro-
cess can be greatly facilitated with a visual template. We use Fig. 6
to walk through the major steps and screen images to show the in-
teraction flow for performing volumetric assessments. The user first
loads the data sources on the template interface (cf. Fig. 6(a)), and
selects the static structures (e.g., tooth crown, pulp, dentin surface,
etc.) to be visualized from a list (cf. Figs. 6(b)-(d)). In visual map-
ping control, the user assigns each volumetric model a surface color
keyed to its threshold level of mineral content loss. Reconstructed
volumetric models that correspond to a variety of threshold levels
are added to the 3D scene (cf. Figs. 6(e)-(i)). The visualization
(cf. Fig. 6(i)) and statistical results (cf. Fig. 6(j)) can provide a
more accurate model for us to understand the results and phenom-
ena generated from the QLF assessment.

Composing Complex Assessment with Multi-View
Templates. There are many scenarios where we desire to create
assessments by applying the same templates across multiple data
sources and hope to examine all the results at a time. Structur-
ing and bringing all the needed assessment results to cariologists
have become highly challenging in such scenarios. To make easy
creation of such batch-style processes, we complement our visual
computing environment with a multi-view template. The multi-
view template provides no new technical functionalities, but al-
lows one to link one or more assessment templates with multiple
data sources. Fig. 7(a) gives an example case scenario where such
multi-view visual analyses are preferred. The assessment is con-
cerned with a longitudinal dental study to examine the dynamic car-
ious lesion activities in a 5-phase demineralization/remineralization
experiment. A volumetric assessment template addressing three
threshold levels is iteratively applied to 5 data sources represent-
ing time-resolved imaging data. The multi-view representation pro-
vides a 3D-time series that intuitively depicts how tooth minerals
with three different levels of loss are evolving over time.

4.3.2 Carious Lesion Assessment by Visual Analysis
During the life cycle of DENVIS client, user needs may evolve and
various types of assessment results may need to be linked for corre-
lation analysis. Especially given novice users’ tendency for iterative
analysis specifications and interactive visualization tasks, DENVIS
client has several features for user friendly customization and query.

Volumetric Assessment with Selected Slices. At times
we need to compare sub-regions across a volumetric model with
their original image datasets or segmentations. With DENVIS, one
can drag and drop a range of slices from data list panel to the visual-
ization panel to force a volumetric assessment with selected slices.
As shown in Fig. 7(b), this allows one to “clip” a volume and con-
nect its sub-regions with the imaging datasets.

Linking Image and Volumetric Assessments. As an ad-
ditional interface element, DENVIS automatically saves the suc-
cessfully applied assessments in the format of a list of drag-and-
drop templates. One value of doing this is to allow users’ explo-
ration of alternatives without risking losing existing experimenta-
tions; all actions are reversible by tracing back to one of the pre-
vious assessments recorded (cf. Fig. 5). Another value of doing
this is to allow users to link visualizations generated from different
types of assessment templates. For example, one can drag-and-drop
a QLF analysis result to link with the volumetric assessment corre-
sponding to the same specimen (Fig. 7(c)).

Quantitative Assessment with Visual Queries. Many
quantitative assessment tasks involve the relationship among mul-
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(a)

(b) (c)

(d) (e)
Figure 7: (a) Longitudinal evaluation of mineral content distributions in artificial carious lesions over 5 phases ( 1© sound �→ 2© demineralization �→ 3© deminer-
alization �→ 4© remineralization �→ 5© remineralization.) Volumes corresponding to 5% mineral content loss are rendered in green, 15% in yellow, and 30% in red.
Visualization indicates that tooth issues lost most mineral content at phase 3 (most pixels in red), with two deimineralization treatments in a row. After two remineral-
ization treatments, the tooth structure at phase 5 has been restored to a status comparable to phase 1. (b) Customizing a clip of volumetric reconstruction by dropping
only 10 slices of images. (c) Drag and drop a QLF image assessment and a µCT volumetric assessment into an integrated view. (d)(e) Quantitative assessment by
visual queries. (d) Finding the distance between the carious lesion and the dental pulp. (e) Finding the ratio of carious lesions in enamel and extending into dentin.

tiple variables. Therefore it is natural to provide users with a
variable-driven query interface to complement the visualizations.
For instance, Fig. 7(d) shows the active query interface for one to
calculate the distance between the reconstructed carious lesion and
the dental pulp. To estimate the degree of encroachment of caries
on the pulp, the minimum distance between the lesion and the den-
tal pulp has to be measured. This information can help to identify
cases with the potential for maintaining pulp vitality and monitor
treatment success of indirect pulp capping, the procedure of cov-
ering the nearly exposed pulp with calcium hydroxide to stimulate
formation of secondary dentin. X-ray imaging has been routinely
used in clinical practice for diagnosis of carious lesions and esti-
mation of their extension. However, the technique only provides
two-dimensional projections limiting the information regarding lo-
cation and size of the lesion and its distance to the pulp. Fig. 7(e)
is the typical screen image for one to query the volumetric ratio be-
tween lesions in enamel (highlighted in green) and those extending
into dentin (in blue).

5 EVALUATION

Parallel Efficiency. Though image processing is conducted
offline, we still want this process to be efficient so that acquired
data can be made immediately available to the frontend for analysis.
Here we focus on the parallel efficiency of our MapReduce-based
approach. We use XSEDE resource Stampede cluster [13] as the
experimental platform, where each compute node has two 8-core
2.7 GHz Intel Xeon E5-2680 processors and 32GB DDR3 mem-
ory. We configure 8 map slots and 4 reduce slots on each Hadoop
node. The experiments are conducted under two settings: (1) in-
crease cluster size while fixing the dataset size, which reveals the
processing speedup by utilizing more computing resources; and (2)
increase dataset size while fixing the cluster size, which reveals the
classical algorithm complexity, i.e., the relationship between the in-
crement of data size and that of corresponding processing time (e.g.
linearly or exponentially). Fig. 8(a) shows the speedup test, with
data size fixed to be 40,000 (80-stack * 500-image per stack) µCT
images. We obtain superlinear speedup when the cluster is scaled

from overly utilized 8 nodes to 16 nodes, due to more map/reduce
tasks running in parallel. The speedup begins to deteriorate when
cluster size goes beyond 32 nodes, due to low cluster utilization and
increased communication cost. Fig. 8(b) shows the algorithm com-
plexity test by varying the dataset size (i.e. from 10,000 to 50,000
images), with Hadoop cluster fixed to be 32 nodes. We observe that
the cluster has serial linear asymptotic behavior.

8 16 32 64
500

1000

1500

2000

2500

3000

T
im

e 
in

 s
ec

on
ds

# of nodes

(a)

10 20 30 40 50
0

200

400

600

800

1000

1200

1400

T
im

e 
in

 s
ec

on
ds

# of microfocus CT images (in thousands)

(b)
Figure 8: Evaluation of parallel efficiency. (a) Speedup test by varying
MapReduce cluster size with # of µCT images fixed to be 40,000. (b) Algo-
rithm complexity test by varying # of µCT images with MapReduce cluster size
fixed to be 32-node.

Response Time. Interactive analytics has stringent require-
ment on the response time to ensure good usability. Table 2 shows
the average transfer size and response time of various data types
for a single specimen at one phase. Response time measures the
turnaround time between client issuing the request and receiving
the response. The DENVIS client, server and MongoDB in this test
co-locate within the same local area network (LAN) with gigabit
Ethernet connection. By transforming image-based “micro”-level
information into “macro”-level volumetric model, we can clearly
see from Table 2 that the data size has been reduced greatly and
hence much faster response time is achieved.

User Evaluation. The DENVIS has seen early use in dental
domain-specific problems. We note that there are two specific case
scenarios where our collaborators have used our system to perform
carious lesion studies and produce visualization and analysis re-
sults for their domain publications. The first scenario is concerned
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Table 2: Average transfer size and response time of various data types for a
single specimen at one phase. Derived 3D geometries are dental crown and
pulp, and dentin surface for the specimen (cf. Fig. 1(b)), lesions corresponding
to a variety of mineral content loss levels for the mineral distribution study (cf.
Fig. 1(c)), and specimen and mineral distribution combined for the longitudinal
study (cf. Fig. 7(a)), respectively.

Data type Data transfer Response
size (MB) time (second)

Derived Single specimen 2.9 0.031
3D Mineral Distribution study 4.2 0.038
geometries Longitudinal study 7.1 0.065
Raw µCT (4,000 slices) 1,172 13.8
imaging QLF (16 images) 14.3 0.18
data Infrared thermal (400 images) 10.9 0.11

with quantitative assessment of dynamic carious lesion activities
in a longitudinal 5-phase demineralization/remineralization dental
study. For longitudinal evaluation of mineral content changes, the
µCT images of sound, demineralized and remineralized enamel and
that of the phantom are acquired. DENVIS is used to generate vi-
sual analysis to study the dynamic carious lesion activities in this
longitudinal study (see one such analysis output in Fig. 7(a)).

The second study uses our system to visualize and correlate QLF
and µCT images of white-spot Lesions. The objective of this study
is whether multiple severity levels (thresholds) of white-spot lesion
determined by a fluorescence technique would be corresponding
to those of µCT images. Visualization is performed by 5% incre-
ment from 70% to 95% of threshold levels using DENVIS. Visual
comparisons with µCT images are performed in two ways: 1) with
original fluorescence images; and 2) with multiple threshold fluo-
rescence images. The study observed that the shape of lesions in
original fluorescence images corresponds well with µCT images.
Within the limitations of this study, multiple severity levels (thresh-
olds) of white-spot lesion determined by fluorescence technique
correspond to those of µCT images. Fig. 7(c) is a typical screen
image to show how QLF and µCT images of white-spot lesions are
being compared and correlated by cariologists.

6 RELATED WORK AND OUR FUTURE DIRECTIONS

The idea of using imaging technologies as adjunct to clinical visual
or tactile examinations for caries diagnosis has greatly facilitated
oral health-care in dentistry [5]. Most previous researches focus
on the actual image acquisition and subsequent three-dimensional
dental visualization. For example, Farman’s work reviewed the
historic of digital imaging in dentistry to outline the fundamen-
tal issues related to digital imaging modalities [1]. Gehleitner il-
lustrated the typical appearance of dental related diseases of the
jaws with dental CT, and suggested where dental CT can serve
as an addition to conventional imaging methods in dental radiol-
ogy [6]. Tymofiyeva’s study assessed the feasibility of MRI of
three-dimensional visualization and quantification of carious le-
sions. Other representative efforts include a variety of ways of
semi-automatic or fully automatic analysis of dental imaging data
(see e.g., Van [14], Pretty [10], and Magne [8]), and to exploit high
performance computing to accelerate the automatic analysis (see
e.g., Zhang [15], Ruan [11], and Smelyanskiy [12]). However, the
ability for researchers to locate, analyze, and use large, complex,
and diverse dental imaging data is still limited for reasons related to
access to relevant software and tools, expertise, and other factors.
Indeed, much less research focuses on the next step — on how to
enable efficient and intuitive cariological analysis of dental datasets
of larger size and more complexity. Cariologists now have huge
collections of high-quality high-definition dental images of various
types and their segmentations, what is really needed is an efficient
means for cariologists to base their knowledge discovery on ex-
ploratory visual analysis of large dental segmentation sets, posing

and answering many high-level domain-specific questions. In this
paper we have introduced DENVIS, an interactive visual comput-
ing environment that allows us to freely “wander” around dental
imaging data managed in a tree widget, and make discoveries by
checking visualizations and analyses generated from intensive lon-
gitudinal data.

There are several directions that we want to explore in the future:
(1) implement the cache and prefetch mechanism in client side to
further reduce the response time. For instance, we can cache the
geometries, statistical and visual query results. Moreover, based
on the current images examined by the user, we can foresee and
prefetch images to be used subsequently; (2) we note that seg-
mented images can benefit from an over 99% compression ratio
since only contours are left. Hence we intend to examine the trade-
off between the storage savings and the extra computation cost for
compression/decompression; (3) we can refine the processing logic
used in MapReduce, for example, by transferring the identified re-
gions of interest instead of the whole segmented images from Map
tasks to Reduce tasks; and (4) reimplementation of DENVIS as a
web-based science gateway portal.
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