
Out-of-Core Visualization of Time-Varying Hybrid-Grid Volume Data
Min Shih∗

University of California, Davis
Yubo Zhang†

University of California, Davis
Kwan-Liu Ma‡

University of California, Davis
Jayanarayanan Sitaraman§

University of Wyoming

Dimitri Mavriplis¶

University of Wyoming

ABSTRACT

Traditional computational fluid dynamics (CFD) solvers are usually
written for a single gridding paradigm such as structured-Cartesian,
structured-body-fitted, or unstructured grids. Each type of mesh
paradigms has inherent advantages and disadvantages. Thus, the
methods of coupling multiple mesh paradigms have been devel-
oped to facilitate the use of different solvers in different part of
the computational domain. However, the complex hybrid gridding
paradigm poses challenges to rendering calculations for visualizing
the data. This paper describes a volume visualization system for
time-varying adaptive moving-body CFD datasets, where the grid
system consists of unstructured grids near the body surface, cou-
pled with Structured Adaptive Mesh Refinement (SAMR) grid in
the off-body domain. We present two approaches to the hybrid-grid
volume ray casting: a KD-tree based single-pass algorithm, and a
multi-pass algorithm using the depth peeling technique. The system
has a three-level memory hierarchy: GPU memory, main memory,
and a solid state drive (SSD). Through data caching and prefetching
within the memory hierarchy, the latency of time-step swapping can
be hidden. Experimental results show that our system allows inter-
active volume exploration on single-GPU commodity PCs.

1 INTRODUCTION

In scientific computing, physics models are approximated using
numerical methods, where the simulation domains are typically
discretized using different types of meshes depending on the nu-
merical scheme and the domain shapes. For example, structured
(Cartesian/curvilinear) meshes and unstructured (tetrahedral/pris-
matic/hexahedral) meshes are commonly used in computational
fluid dynamics (CFD). Each mesh paradigm has inherent advan-
tages and disadvantages. Cartesian grids are easy to generate, to
adapt, and are computationally efficient in general, but they are not
suited for resolving boundary layers around complex geometries.
On the other hand, structured curvilinear grids and unstructured
grids work well for resolving boundary layers, but the generation
of curvilinear grids for complex geometries is tedious, and unstruc-
tured grids often suffer from less computational efficiency. There-
fore, today, the tendency is to couple different mesh paradigms so
that different types of mesh are used in different part of the compu-
tational domain. HELIOS [18] [20] [26] is one of the computation
software packages following this strategy.

In HELIOS datasets, unstructured near-body meshes are used
to cover dynamic irregular boundary regions around the moving
body, and adaptive Cartesian off-body grids, which follow Struc-
tured Adaptive Mesh Refinement [1] scheme, are used to fill the

∗e-mail: minshih@ucdavis.edu
†e-mail: ybzhang@ucdavis.edu
‡e-mail: ma@cs.ucdavis.edu
§e-mail: jsitaram@uwyo.edu
¶e-mail: mavripl@uwyo.edu

rest. The time-varying hybrid-grid data introduces new challenges
to direct volume rendering (DVR) including efficient cell access
to overlapped hybrid meshes and optimized data transfer in multi-
level memory hierarchy. To our knowledge, there are no published
papers addressing the difficulties encountered from this kind of
data.

In this paper, we present a volume renderer for the time-varying
hybrid-grid HELIOS datasets. Two different volume rendering ap-
proaches to the hybrid-grid data are introduced and compared. The
first approach is a single-pass method which employs a hybrid KD-
tree structure for fast cell location within the ray traversal process.
In the second approach, the near-body unstructured grid and the off-
body AMR grid are rendered in a multi-pass fashion with a mod-
ified depth peeling technique. In addition, we introduce an opti-
mized data streaming strategy for the out-of-core volume rendering
of hybrid-grid data to hide the latency while producing animations
and to improve the user experience. The renderer allows user to
interactively explore the data in both spatial and temporal domain.

2 RELATED WORK

Our hybrid-grid volume rendering technique involves time-varying
unstructured-grid data and AMR data. In this section, we review
previous work on GPU accelerated unstructured grid and AMR vol-
ume rendering, as well as time-varying volume visualization tech-
niques.

AMR Volume Rendering For AMR data, Kähler and Abel
presented a single-pass ray-casting technique on GPU [11]. To ac-
celerate data access, a KD-tree approach is adopted in their imple-
mentation. Leaf et al. presented a cluster-parallel GPU volume ren-
dering technique for large-scale AMR data [13]. The data volume
is divided into convexly-bounded chunks for load-balancing.

Unstructured Grid Volume Rendering The Projected Tetra-
hedra (PT) algorithm introduced by Shirley and Tuchman [19] is
a cell projection approach, which decomposes a projected tetrahe-
dron into triangles in order to benefit from hardware rasterization.
The PT algorithm needs a visibility ordering of the cells. A vari-
ety of sorting approaches have been developed [4] [16]. However,
for rasterization-based GPU techniques, interactivity degrades sig-
nificantly for large datasets. Also, the proposed sorting methods
are hard to use directly on the hybrid-grid data handled by this
paper. On the other hand, Weiler et al. presented the first imple-
mentation of GPU accelerated volume ray-casting for tetrahedral
meshes [24]. To render non-convex tetrahedral meshes on GPU,
the depth peeling algorithm is adopted in [25]. Muigg et al. in-
troduced a focus+context visualization technique for unstructured
volume data [17], where important regions are maintained as un-
structured bricks and other regions are resampled using structured
bricks, and the volume is then rendered in a hybrid ray-casting man-
ner.

Time-varying Volume Visualization A survey of time-
varying data visualization strategies is given in Ma’s paper [15].
Chiang proposed an out-of-core isosurface extraction method for
time-varying irregular grids [5]. Bernardon et al. presented an inter-
active volume renderer for time-varying unstructured-grid data [2].

93

IEEE Symposium on Large Data Analysis and Visualization 2014
October 9–10, Paris, France
978-1-4799-5215-1/14/$31.00 ©2014 IEEE

Figure 1: Hybrid grid. Unstructured grids capture boundary layers
around the geometry and adaptive Cartesian grids capture far-field
flow features.

Their work focuses on the time-varying scalar fields on static ge-
ometry and topology. Wald et al. adopted direct ray-tracing for
rendering isosurfaces in time-varying tetrahedral volume data [22].
Gosink et al. introduced a GPU-accelerated query-driven visualiza-
tion technique for time-varying AMR data [9]. Wang et al. pre-
sented a compression technique for rendering time-varying volume
data [23], which takes scientists’ domain knowledge into account.
Hadwiger et al. introduced an interactive volume exploration tech-
nique for peta-scale time-varying volume data [10].

3 HYBRID-GRID DATA

The HELIOS datasets we deal with in this paper involve aerody-
namic flow simulations of time-dependent moving-bodies. The
mesh paradigm in HELIOS datasets consists of separate near-body
and off-body grid systems. The near-body grid is an unstructured
mixed-element (tetrahedra, prisms, pyramids, and hexahedra) grid,
while the off-body grid is an adaptive multi-level Cartesian grid, as
shown in Figure 1.

The unstructured near-body grid extends a short distance from
the body. The reason for using an unstructured grid in the near-
body region is to capture the geometry and viscous boundary layer
effects, which are difficult to capture with Cartesian grids alone. To
tightly fit complex geometry or separated bodies, the near-body grid
can have multiple disconnected blocks overlapping each other. At
a short distance from the body, in the regions where the near-body
grid overlaps off-body grid, the solution of the near-body grid is
interpolated onto the off-body Cartesian grid as Dirichlet boundary
conditions.

The off-body grid follows Structured Adaptive Mesh Refinement
(SAMR) scheme, where adaptive Cartesian grids capture far-field
flow features. The levels are generated from coarsest to finest,
where the coarsest level defines the physical extent of the com-
putational domain. For each step of the simulation, the physical
quantities and gradients are evaluated at each Cartesian cell, and
the cells holding values requiring refinement are marked. These
marked cells are clustered into a set of rectangular grid patches,
called subgrids, forming the new finer level.

4 SYSTEM OVERVIEW

Figure 2 depicts an overview of our system. In regard to our
datasets, a single time-step can fit into GPU memory. However, the
total size of the whole time sequence is too large, and the dataset
has to be stored out-of-core. We place the data on a high speed
solid state drive (SSD), which is much faster than traditional hard
drives, making the system capable of responding in a short time
when user switches between the time-steps. In order to improve the

interactivity of the visualization system, it is beneficial if the data
preparation latency can be further shortened. To meet this need, we
perform a one-time preprocessing to the raw data to minimize the
data processing time at runtime. Also, a data caching and prefetch-
ing strategy within the memory hierarchy is used in the runtime in
order to minimize the data loading latency.

At the runtime, processed data is read from the SSD and loaded
into GPU memory for rendering. We implemented two different
volume rendering methods: a single-pass ray casting approach and
a multi-pass ray casting approach. Both approaches involve two
main tasks: unstructured-grid rendering for the near-body grid, and
AMR rendering for the off-body grid. Our unstructured-grid ren-
derer adopts the tetrahedral cell walking algorithm, which utilizes
the connectivity information of the grid. The AMR renderer imple-
mentation is based on the single-pass AMR ray casting algorithm
presented by Kähler et al. [11]. The approach employs a KD-tree
that partitions the data domain into axis-aligned, non-overlapping
blocks of cells of the same resolution level, enabling processing
the subgrids in front-to-back order for each view ray. Kähler et
al. discussed two different GPU data storage strategies, namely the
texture packing approach and the bindless texture (or texture object
in CUDA) approach. We also implemented and examined the two
approaches for the out-of-core hybrid-grid rendering.

In our ray casting algorithms, one of the critical problems is to
find the intersection of the viewing ray and the boundary of the un-
structured near-body grid, so that we can initiate the cell walking
process. However, the characteristics of the HELIOS hybrid-grid
datasets make this task non-trivial. To achieve this, our single-
pass method uses a hybrid KD-tree structure, which works for both
AMR ray traversal and unstructured-grid cell location. The multi-
pass approach, on the other hand, uses a modified depth peeling
method to render the near-body grid and off-body grid separately.
More details are discussed in Section 6.2.

5 PREPROCESSING

In order to accelerate time-step swapping in the runtime, we per-
form a one-time preprocessing to the raw data and store the results
on the fast SSD. The preprocessing covers most of time-consuming
data preparation tasks. The processed data for each time-step in-
cludes following items:

Off-Body Grid Data The off-body grid data consists of a set of
AMR subgrids. The data values as well as the information about the
subgrids (including the dimensions, layer, and the physical domain
represented by the subgrid) are stored.

Near-Body Grid Data The processed near-body grid data in-
cludes the vertex list, tetrahedron list, connectivity list, data values,
and the gradients.

For the convenience of rendering, the various types of cells
(prisms, pyramids, hexahedra) of the original unstructured grid are
subdivided into tetrahedral cells. In the cell walking process of
the tetrahedral grid ray casting algorithm, the cell-to-cell connec-
tivity information is necessary. We construct the connectivity list
where each element stores the indices of the four cells adjacent to
the four faces respectively of the corresponding tetrahedral cell. For
the boundary cells, the adjacent index of the boundary faces are set
to -1, so that we can determine if the viewing ray has left the mesh.

Gradient estimation is necessary for the gradient based Blinn-
Phong shading model. Since on-the-fly gradient estimation for un-
structured grids is expensive, we perform the per-vertex gradient
estimation in the preprocessing stage. A regression based method
is used for the gradient estimation. For more details about gradient
estimation on unstructured grids, we refer our readers to [6].

In our datasets, the topology of the mesh does not change much
while the time step changes. Therefore, the tetrahedron list and the
connectivity list can be stored in a compact way: we only store the

94

Figure 2: System overview.

complete list of the first time-step, while for the remaining time-
steps, only the differences between the step and the first step are
stored.

Hybrid KD-Tree The hybrid KD-tree plays an important role
in our single-pass ray casting algorithm. The KD-tree must fulfill
two main requirements: 1) With the KD-tree, we should be able to
perform a front-to-back visit to the AMR subgrids, and 2) given a
point within the computational domain, we should be able to effi-
ciently determine if the point lies inside a near-body unstructured
grid and locate the grid cell that contains the point.

The KD-tree is constructed with a two-stage process: In the first
stage, we follow the strategy suggested in [11] to build a KD-tree
which partitions the computational domain covered by the off-body
AMR subgrids into non-overlapping blocks of cells of the same
resolution level. Algorithm 1 summarizes the procedure. In the
second stage, we find the leaf nodes generated in the previous stage
in which the domain overlaps the near-body grid, and further de-
compose these leaf nodes for cell location purpose. Here we use a
point-based KD-tree construction scheme: the center points of the
near-body grid cells are used to guide the node subdivision. The
node containing cell-center points are subdivided recursively until
the number of cell-center points is less than a predefined threshold.
Through selecting the threshold value, we can control the size of
the constructed tree. Whenever the subdivision stops, the resulting
leaf node stores the index of one of the cells contained in the node.
The KD-nodes are stored in a compact layout: one floating-point
value and two 32-bit integer values per node. The floating-point
value is used to store the position of the splitting plane. The first
integer value is divided into two parts: Two bits are used to indicate
the splitting axis (value 0-2) for inner nodes. If the node is a leaf,
the value is set to 3. The remaining bits are used to store the ID of
the AMR subgrid. The second integer value stores the offset to the
children when the node is an inner node or the ID of the tetrahedral
cell when the node is a leaf.

6 RENDERING

At the runtime, our system loads the preprocessed data into main
memory and GPU memory, and performs volume ray casting to
generate the image.

6.1 Data Caching and Prefetching
The basic idea of our caching design is to keep as many time-steps
in the GPU memory and main memory as possible. The GPU mem-
ory and the main memory are treated as level 1 and level 2 cache,
respectively, forming a three-level memory hierarchy: GPU mem-
ory, main memory, and the SSD. When a time-step is selected by
the user, the cache manager checks the GPU memory and the main
memory to see if the requested time-step already exists. If the time-
step is not in the GPU memory or the main memory, the correspond-
ing data transfer from lower levels to upper levels is then performed.

Since the time-step switching actions are usually taken between
adjacent time-steps, the subsequent time-steps can be prefetched
beforehand. We keep a priority queue of all time-steps keyed on the
prefetching priority according to the current time-step. The closer

Algorithm 1 Hybrid KD-tree construction, stage 1
1: set the domain of the root node of the KD-tree to the bounding

box of all subgrids on the root level of the AMR hierarchy;
2: for i← 0 .. finest level of the AMR do
3: for each leaf node n in the current KD-tree do
4: slist← all the subgrids in level i that overlap node n;
5: SplitLeaf(n, slist);
6: end for
7: end for
8:
9: function SPLITLEAF(n, slist)

10: if slist.empty() or slist.count() = 1 then
11: return;
12: end if
13: select an axis-aligned splitting plane that introduces the

smallest number of intersections with the bounding boxes of
the subgrids in slist (there should be at least one slab of cells
on each side);

14: construct n.leftChild and n.rightChild according to the se-
lected splitting plane;

15: llist← the subgrids in slist that overlap n.leftChild;
16: rlist← the subgrids in slist that overlap n.rightChild;
17: SplitLeaf(n.leftChild, llist);
18: SplitLeaf(n.rightChild, rlist);
19: end function

time-steps to the current time-step have higher priority. For the two
time-steps evenly close to the current step, the one after the current
step has higher priority since the time sequence is more likely to be
player in the forward direction. In order to overlap the rendering
time and the data transferring time, a separate cache management
thread is used to handle the data swapping. The prefetching takes
place when the cache management thread is idle.

6.2 Ray Casting Hybrid-Grid
As aforementioned, the HELIOS datasets contain two different
types of grid: unstructured near-body grid and Cartesian AMR off-
body grid. The overlap between these grids makes volume render-
ing a non-trivial task. The unstructured near-body grid always over-
lays the background Cartesian AMR off-body grid, and the near-
body grid itself can have multiple blocks overlapping each other.
In order to correctly render the hybrid-grid data, the overlapping
regions must be carefully handled. In HELIOS datasets, the transi-
tion from the near-body grid to the off-body grid normally occurs
at a distance where the size of the near-body grid cells is approx-
imately commensurate with the size of the off-body grid cells. In
other words, at the regions that the near-body grid overlaps off-
body grid, the resolution of near-body grid is usually higher than or
at least about the same as the resolution of the off-body grid. There-
fore, our strategy dealing with the overlapping regions is straight-
forward: we always sample the unstructured near-body grid when
it is available.

To perform a switch from the off-body grid to the near-body grid

95

at the interface between the two grids, we need to find the inter-
section of the viewing ray and the boundary of the unstructured
near-body grid. Previous unstructured-grid ray casting approaches
usually do this by using rasterization of the visible boundary faces
of the mesh. However, this procedure becomes a bit complex if the
mesh is non-convex since there may be re-entries, i.e. the view-
ing rays exited from the mesh may re-enter the mesh. To prop-
erly handle non-convex meshes, convexification [24] or depth peel-
ing [3] techniques are used to solve the re-entry problem. However,
these techniques cannot be directly used for the HELIOS hybrid-
grid datasets since there can be overlaps within the unstructured
near-body grid, which means that when the viewing ray exits from
the near-body grid, it may still be inside another near-body grid
block. Our single-pass method and the multi-pass method mainly
differ in the way they handle this issue.

6.2.1 Single-Pass Ray Casting

We implemented the single-pass hybrid-grid ray casting algorithm
using NVIDIA CUDA. The traversal of the viewing rays is per-
formed by launching a screen-sized CUDA grid, where each thread
computes a single ray and outputs the color of a pixel on the screen.
At the beginning of the traversal, a ray-box intersection test be-
tween the viewing ray and the bounding box of the data domain,
that is, the bounding box of the root node of the KD-tree, is ap-
plied to obtain the ray segment that intersects the domain box. The
threads in which the ray misses the domain box is terminated im-
mediately.

The KD-tree traversal starts at the root node. A top-down traver-
sal is applied to find the foremost leaf node. Although previous
GPU KD-tree traversal approaches often make use of stack-less
techniques such as KD-restart algorithm [8] in order to avoid us-
ing shader-unsupported local arrays, our implementation uses stan-
dard stack-based KD-tree traversal algorithm as the one introduced
in [21] since the limitation of using local arrays is relaxed in mod-
ern GPU programming. Our experiments show that KD-restart al-
gorithm does not benefit the rendering in terms of performance.

Once a leaf node is reached, we apply ray marching within the
AMR subgrid pointed by the node to evaluate the color integration
along the ray segment. This process is the same as the standard
GPU ray casting approach for uniform-grid data except that if the
cell ID field of the node is non-negative, which means that there are
some tetrahedral cells located within the bounding box of the node,
we make a cell location query to check if the ray has entered the
near-body unstructured grid in each step.

The cell location is performed by the following process: We start
at the cell indicated by the leaf node, and shoot a ray from the cell
center to the queried point. Making use of cell adjacency infor-
mation provided by the connectivity list, the cell containing the
queried point is reached by cell walking, and the ID of the cell is
then returned by the cell location procedure. If the grid boundary is
reached during the cell walking, the procedure returns -1, meaning
that the point is outside the grid. Note that this procedure is not
one hundred percent accurate since the ray may exit from the grid
and then enter the grid again at complex grid boundary. Langbein
et al. [12] present a method to handle this situation. However, with
the HELIOS datasets, even if we miss some boundary parts of the
near-body grid, the space can still be filled by the off-body grid, so
there will not be serious artifacts due to this problem.

If a non-negative cell ID is returned by the cell location pro-
cedure, we immediately stop the ray marching of the AMR subgrid
and enter the tetrahedral grid cell walking routine. Weiler et al. [24]
give a detailed description of the method to determine the exit point
and the exit face given the ray and the cell vertices. Given the exit
face, the connectivity list is again used to locate the next cell for
each step. The cell walking terminates when the ray hits the grid
boundary.

During the traversal within the near-body unstructured grid, the
KD-tree traversal status is not updated as the ray marches. So when
the ray exits from the near-body grid, we have to update the KD-
tree traversal status according to the current position. We do this by
examining the ray segments of the stack elements. We keep pop-
ping the stack until the top element of the stack has the ray segment
containing the current position (the exit point from the near-body
grid). The near distance of the top element is then replaced by the
current position so that everything before the current point will be
skipped in the following traversal.

For the ray integration of both AMR grid and unstructured grid,
we apply the pre-integration approach published in [14]. The
method extends ordinary pre-integration approach to support high-
quality lighting. In AMR grids, the step size is selected according
to the voxel size of the subgrid. We found that in coarse subgrids, a
low sampling rate (large step size) may cause obvious artifacts due
to the huge gradient variation. On the other hand, in fine subgrids,
a lower sampling rate (relative to the voxel size) can be used. We
set the step sizes for fine subgrids and coarse subgrids respectively
so that the sampling rate for fine subgrids is about two samples per
voxel and the sampling rate for coarse subgrids is about ten samples
per voxel.

The ray traversal algorithm is summarized in Algorithm 2.

6.2.2 Multi-Pass Ray Casting

In this section, an alternative approach to ray casting hybrid grid,
a multi-pass method, is presented. Our multi-pass rendering al-
gorithm is based on a technique similar to depth peeling [7].
Depth peeling is a technique originally introduced to handle order-
independent transparency. Weiler et al. [25] uses the idea to handle
the re-entry problem of ray casting non-convex tetrahedral meshes.
We further extend the method to deal with hybrid-grid rendering.

The idea of our multi-pass approach is to perform several traver-
sal cycles on the near-body grid. In each cycle, we traverse the
view rays starting from the intersection of the rays with a layer of
the front faces of the boundary mesh. Before the first cycle, after
the last cycle, and between each two consecutive cycles, AMR ray
traversal is performed to evaluate the contribution of the off-body
grid within the regions that are not covered by the near-body grid.

A rendering pass starts with rasterizing the list of boundary tri-
angles, labelled with cell indices, of the tetrahedral near-body grid.
During the rasterization, besides the standard OpenGL GL LESS
depth-test, a front-depth-test is applied. The depth-buffer of the
previous pass, which records the depth of the previous layer, is
bound as a texture, serving as the front-depth-buffer. In the frag-
ment shader, the incoming sample is tested to see if the depth of the
sample is greater than the value of the front-depth-buffer. Any sam-
ple that does not pass the test is discarded, so that previous layers
are not rendered again. For each pixel, the fragment shader outputs
the index of the intersected tetrahedral cell as well as the intersec-
tion distance (from the ray origin).

Next, we perform AMR ray traversal on the off-body grid. The
traversal is applied within a ray-segment, represented by the ray ori-
gin, ray direction, tnear(near-distance), and tfar(far-distance).
We set tfar to the intersection distance got from the near-body
boundary mesh rasterization, so that the off-body grid traversal
stops at the point that the ray intersects the near-body grid. tnear
is set to the near-clip distance, usually a small value, in the first pass.
In the following passes, tnear is set to the distance between the
ray origin and the exit point from the near-body grid in the previous
pass, so that the ray starts the off-body grid traversal immediately
at the point that the ray exits from the near-body grid.

After the off-body traversal, the unstructured-grid traversal on
the near-body grid is then performed. Similar to the AMR ray
traversal, the unstructured-grid traversal procedure takes a ray-
segment as input, where the tnear is set to the same value as

96

Algorithm 2 Single-Pass Ray Casting
1: tnear, tfar← domainBox.clipRaySegment();
2: if tnear > tfar then . ray misses the box
3: return;
4: end if
5: node← root;
6: while true do
7: KD-tree traversal to find the leaf node (updating node, tn-

ear, tfar, and stack);
8: subgrid← subgrid[node.subgridId];
9: cellId← -1;

10: while tnear < tfar do
11: p← ray.origin + ray.dir * tnear;
12: if node.cellId ≥ 0 then
13: cellId← cellLocation(p, node.cellId);
14: if cellId ≥ 0 then
15: break;
16: end if
17: end if
18: sample subgrid at p;
19: accumulate color and opacity;
20: tnear← tnear + sampleStep;
21: end while
22: if cellId ≥ 0 then . ray hits the near-body grid
23: while cellId ≥ 0 do
24: accumulate color and opacity;
25: tExit← the distance at which the ray exits from the

cell;
26: exitFace ← the face through which the ray exits

from the cell;
27: cellId← connectivityList[cellId][exitFace];
28: end while
29: while not stack.empty() and stack.top.tfar ≤ tExit do
30: stack.pop();
31: end while
32: if not stack.empty() then
33: stack.top.near← tExit;
34: end if
35: end if
36: if stack.empty() then
37: return;
38: end if
39: nodeId, tnear, tfar← stack.pop();
40: end while

which used in the off-body traversal, and tfar is set to the infi-
nite value. The cell index and the intersection distance retrieved in
the rasterization step is used to determine the starting point of the
traversal. Since there can be multiple near-body grid blocks over-
lapping each other in the hybrid-grid data as shown in Figure 3,
the overlapping regions must be carefully handled. The spatial re-
lationship between the current layer and the previous layer can be
judged by comparing the tnear value with the intersection dis-
tance tIsect. The case that tIsect is greater than tnear
means the current layer is separated from the previous layer and
no special treatment is needed, so we start the cell walking from
tIsect normally. On the other hand, if tIsect is less than
tnear, it means that the two layers overlap each other and the exit
point from the previous layer is inside the current layer. In this case,
we perform cell walking but ignore the color/opacity contributions
of the cells until the ray reaches tnear, so that the overlapping re-
gion is not taken into account again. Note that the off-body traversal
between two overlapping layers is not performed. This is achieved
automatically because in this case the tnearwould be greater than
tfar in the AMR traversal procedure. At the end of the near-body

Peel 1

Peel 2

Peel 3

Off-body

Figure 3: Depth peeling for overlapping near-body grid blocks. The
blue rays are traversed in peel 1, while green rays are in peel 2, and
red rays are in peel 3. Dashed rays are traversed in the off-body grid.

ray traversal process, the distance between the ray origin and the
point where the ray exits from the mesh is written to a buffer for the
tnear value of the next pass.

The process continues until there is no sample passing the depth-
test in the fragment shader, meaning that the layers of the near-body
grid are all “peeled-off”.

The AMR and the unstructured-grid ray traversal are both im-
plemented in CUDA. The AMR ray traversal kernel implements
the single-pass AMR ray casting algorithm presented by Kähler et
al. [11]. The algorithm relies on the KD-tree built in the prepro-
cessing stage. But unlike the single-pass approach described in the
previous section, we do not use this KD-tree for cell location, so
only the AMR part of the KD-tree is needed. The unstructured-grid
ray traversal kernel implements a single-pass tetrahedral cell walk-
ing algorithm based on the techniques suggested in the paper of
Weiler et al. [25]. The same as the single-pass approach presented
in the previous section, we apply the pre-integration method to per-
form high-quality ray integration. The color and opacity integration
result of each ray segment of both AMR traversal and unstructured-
grid traversal is blended into the same buffer.

Algorithm 3 gives a summary of the multi-pass method.

7 RESULTS AND DISCUSSION

We tested our implementation on an NVIDIA GeForce GTX Titan
graphics card with 6 GB of video memory, installed on a PC with
an Intel Core i7 3.5 GHz processor and 32 GB of main memory.
Performance and memory requirement tests are performed on two
datasets. The first dataset is a 264-step simulation of a wind turbine
(henceforth referred to as Large dataset). The second dataset is a
relatively small dataset with a 289-step simulation of a wind tur-
bine with vertical blades (henceforth referred to as Small dataset).
Example images are shown in Figure 4. Table 1 lists the character-
istics of a typical time-step of the datasets.

The one-time preprocessing is performed on the test datasets.
Table 2 lists the size of the preprocessed data as well as the pro-
cessing time. For the grid part of the near-body grid, only the first
time-step is stored completely, while in the following steps we only
keep the difference of the step to the first step.

The runtime performance is evaluated by benchmarking the data
transferring time and the rendering time. Rendering time is tested
on a viewport size of 1024× 1024 pixels. We compared the two
rendering methods, the single-pass and the multi-pass approach,
proposed in this paper. The results show that the multi-pass ap-
proach is faster than the single-pass approach, suggesting that the
cost of processing the depth peeling and launching kernel many
times may be lower than the overhead introduced by the deep KD-
tree traversal for cell location in the single-pass approach. Also the
long kernel code of the single-pass ray traversal may consume too
many registers, causing low warp occupancy and reducing latency
hiding ability in the CUDA kernel. Furthermore, in the single-pass

97

(a) (b)

(c) (d)

Figure 4: Rendering examples of the datasets. (a) shows the velocity magnitude of the Large dataset. (c) shows the vorticity magnitude of
the Small dataset. In both images, high-value regions are colored in red, while blue color indicates the low-value regions. (b) and (d) show the
hybrid-grid layout of the datasets.

Table 1: Dataset characteristics.

Off-body grid Near-body grid
Dataset raw data size #steps #levels #grids #cells #tetras #prisms #pyramids #hexas
Large 456GB 264 6 2704 54M 3.2M 2.6M 29K 0
Small 164GB 289 6 765 17M 0 0 0 196K

Table 2: Processed data size and the processing time for the preprocessing of a single time-step.

Off-body grid Near-body grid KD-tree
Dataset solution grid(first step) grid solution #nodes size processing time
Large 208MB 367MB 22MB 29MB 3.9M 45MB 38.0s
Small 68MB 38MB 2MB 3MB 0.3M 4MB 8.1s

approach, the near-body grid and the off-body grid are handled in
the same kernel at the same time. The large memory footprint may
work against the caching performance in the kernel.

The packing approach and the bindless texture approach for
AMR rendering are examined. Although these two approaches have
been discussed in [11], we applied the comparison again because
our system considers not only the rendering performance but also
the data loading and preparation time. Our results show that, as
shown in Table 3, there is no significant difference in rendering
time between the packing approach and the texture object approach
for the AMR rendering. The packing approach uses more memory
because fragmentation is introduced when the differently sized sub-

grids are packed into the texture memory pool. Since we perform
the packing at the moment the subgrids are loaded into the main
memory, the data loading+processing time from SSD to the main
memory of the packing approach is longer than the texture object
approach. However, the texture object approach spends more time
on the GPU data loading stage due to the frequent allocation of the
GPU texture memory and the creation of texture objects. In addi-
tion, we found that with the texture object approach, sometimes the
GPU out-of-memory exception occurs even when the total texture
size does not exceed the GPU memory size. A possible reason is
that the large amount of small textures causes fragmentation in the
GPU memory. So overall, we found that the texture object approach

98

Algorithm 3 Multi-Pass Ray Casting
1: clearBuffers();
2: tCurrent← EPSILON;
3: tSceneMax← INFINITE;
4: layer← 0;
5: while true do
6: entryCell, tIsect, depthBuffer[1-layer%2] ← pee-

lALayer(depthBuffer[layer%2]);
7: if no sample passed then
8: break;
9: end if

10: rayCastingAMR(tCurrent, tIsect);
11: rayCastingTetrahedral(tCurrent, tSceneMax, entryCell, tI-

sect);
12: layer← layer + 1;
13: end while
14: rayCastingAMR(tCurrent, tSceneMax);
15:
16: function RAYCASTINGAMR(tnear, tfar)
17: accumulate the color and opacity along the ray from tnear

to tfar;
18: end function
19:
20: function RAYCASTINGTETRAHEDRAL(tnear, tfar, entryCell,

tIsect)
21: if tnear < tIsect then
22: tnear← tIsect;
23: else
24: skip the cells between tIsect and tnear;
25: end if
26: accumulate the color and opacity along the ray from tnear

until the ray reaches tfar or exits from the mesh;
27: tCurrent← the exit distance;
28: end function

does not benefit from the fewer memory usage.
The depth of the hybrid KD-tree can be adjusted in the construc-

tion time by selecting the maximum number of tetrahedral cells al-
lowed in a single leaf node. We tested different construction set-
tings, resulting the trees with different sizes. Figure 5 shows the
runtime performance with these trees for the Large dataset using the
single-pass approach. It is clear that the data loading time decreases
as the tree gets shallower. However, the rendering time shows a
U-shape in the figure. The two ends, the deepest tree and the shal-
lowest tree, perform worse than the median setting. Apparently, the
deep trees need more steps during the traversal, which may intro-
duce more cost. On the other hand, shallow trees allow more cells
residing in a leaf node, giving an inaccurate starting point for cell
location, and therefore more steps are needed in the cell walking
process for locating the queried point.

Although it seems that the multi-pass approach totally outper-
forms the single-pass approach, the single-pass method may be
beneficial in some cases. For example, since the single-pass ap-
proach allows simultaneous access to both the near-body grid and
the off-body grid, a sophisticated sampling scheme may be used to
eliminate the visually undesired seams at the interface between the
near-body grid and the off-body grid.

8 CONCLUSION AND FUTURE WORK

We presented a volume renderer for time-varying hybrid-grid data
which couples near-body unstructured grid and off-body Cartesian
AMR grid. Two different approaches to hybrid-grid volume render-
ing are introduced and compared. In both methods, the difficulties
introduced by the hybrid, overlapping meshing paradigm are ad-
dressed. Experiments show that in general, the multi-pass method

Table 3: Runtime performance (all in milliseconds). The single-pass
method (SPM) is compared with the multi-pass method (MPM). The
texture object approach (TO) and the packing approach (PK) for AMR
rendering are also compared.

Large Small
SPM MPM SPM MPM

SSD
to

main
memory

off-body TO 180 180 53 53
PK 360 360 103 103

near-body 233 233 25 25
KD-tree 33 0 4 0

total TO 446 413 82 78
PK 626 593 132 128

Main
memory

to
GPU

off-body TO 819 819 205 205
PK 173 173 36 36

near-body 96 96 18 18
KD-tree 16 0 2 0

total TO 931 915 225 223
PK 285 269 56 54

Rendering TO 648 436 581 239
PK 648 419 579 224

Figure 5: Data loading time (red line) and rendering time (blue line)
to the KD-tree depth.

outperforms the single-pass method. With the optimal settings, our
renderer can achieve interactive or near-interactive performance for
the hybrid-grid data on a single machine. In addition, although not
mentioned in the results section, the caching and prefetching mech-
anism we proposed greatly improves the user experience by over-
laying the data transfer time and the rendering time.

Due to the inconsistency between the different solutions from
different solvers used for the near-body and the off-body grids,
there are obvious seams on the rendered images at the interface be-
tween the two grid systems with our current implementation. This
problem could be solved by sampling from both grids and blending
the sampled values by a carefully chosen weighting at the interface
regions.

The data size of a single time-step is limited by the GPU mem-
ory size in our current design. To handle large hybrid meshes, the
renderer presented in this work could also be adapted to GPU clus-
ters.

ACKNOWLEDGEMENTS

This research has been sponsored in part by the National Science
Foundation through grants DRL-1323214, IIS-1255237, and CCF-
0938114, and Department of Energy through grants DE-FC02-
06ER25777, DE-CS0005334, and DE-FC02-12ER26072 with pro-
gram managers Lucy Nowell and Ceren Susut-Bennett.

99

Figure 6: Selected time-steps of the two datasets. Top: the Large dataset. Bottom: the Small dataset.

REFERENCES

[1] M. J. Berger and J. E. Oliger. Adaptive mesh refinement for hyper-
bolic partial differential equations. Journal of Computaional Physics,
53(3):484–512, 1984.

[2] F. F. Bernardon, S. P. Callahan, J. a. L. D. Comba, and C. T. Silva.
Interactive volume rendering of unstructured grids with time-varying
scalar fields. In Proceedings of the Eurographics Conference on Par-
allel Graphics and Visualization 2006.

[3] F. F. Bernardon, C. A. Pagot, J. L. D. Comba, and C. T. Silva. Gpu-
based tiled ray casting using depth peeling. Technical report, 2004.

[4] S. Callahan, M. Ikits, J. Comba, and C. Silva. Hardware-assisted visi-
bility ordering for unstructured volume rendering. IEEE Transactions
on Visualization and Computer Graphics, 11(3):285–295, 2005.

[5] Y.-J. Chiang. Out-of-core isosurface extraction of time-varying fields
over irregular grids. In IEEE Visualization, pages 217–224, 2003.

[6] C. Correa, R. Hero, and K.-L. Ma. A comparison of gradient estima-
tion methods for volume rendering on unstructured meshes. IEEE
Transactions on Visualization and Computer Graphics, 17(3):305–
319, March 2011.

[7] C. Everitt. Interactive order-independent transparency. Technical re-
port, 2001.

[8] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu
raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
Conference on Graphics Hardware, HWWS ’05, pages 15–22, New
York, NY, USA, 2005. ACM.

[9] L. J. Gosink, J. C. Anderson, E. W. Bethel, and K. I. Joy. Query-driven
visualization of time-varying adaptive mesh refinement data. IEEE
Transactions on Visualization and Computer Graphics, 14(6):1715–
1722, Nov. 2008.

[10] M. Hadwiger, J. Beyer, W.-K. Jeong, and H. Pfister. Interactive
volume exploration of petascale microscopy data streams using a
visualization-driven virtual memory approach. IEEE Transactions on
Visualization and Computer Graphics, 18(12):2285–2294, Dec 2012.

[11] R. Kähler and T. Abel. Single-pass gpu-raycasting for structured adap-
tive mesh refinement data. CoRR, abs/1212.3333, 2012.

[12] M. Langbein, G. Scheuermann, and X. Tricoche. An efficient point
location method for visualization in large unstructured grids. In VMV,
pages 27–35, 2003.

[13] N. Leaf, V. Vishwanath, J. A. Insley, M. Hereld, M. E. Papka, and
K.-L. Ma. Efficient parallel volume rendering of large-scale adaptive
mesh refinement data. In LDAV, pages 35–42, 2013.

[14] E. B. Lum, B. Wilson, and K.-L. Ma. High-quality lighting and effi-
cient pre-integration for volume rendering. In Proceedings of the Joint

Eurographics - IEEE TCVG Conference on Visualization 2004.
[15] K.-L. Ma. Visualizing time-varying volume data. Computing in Sci-

ence Engineering, 5(2):34–42, Mar 2003.
[16] A. Maximo, R. Marroquim, and R. Farias. Hardware-assisted pro-

jected tetrahedra. In Proceedings of the Eurographics / IEEE - VGTC
Conference on Visualization 2010.

[17] P. Muigg, M. Hadwiger, H. Doleisch, and H. Hauser. Scalable hybrid
unstructured and structured grid raycasting. IEEE Transactions on
Visualization and Computer Graphics, 13(6):1592–1599, Nov 2007.

[18] V. Sankaran, A. Wissink, A. Datta, J. Sitaraman, M. Potsdam, B. Ja-
yaraman, A. Katz, S. Kamkar, B. Roget, D. Mavriplis, H. Saberi, W.-
B. Chen, W. Johnson, and R. Strawn. Overview of the helios version
2.0 computational platform for rotorcraft simulations. In 49th AIAA
Aerospace Sciences Conference. AIAA Paper 2011-1105, 2011.

[19] P. Shirley and A. Tuchman. A polygonal approximation to direct
scalar volume rendering. In Proceedings of the 1990 Workshop on
Volume Visualization, VVS ’90, New York, NY, USA, 1990. ACM.

[20] J. Sitaraman, A. Wissink, V. Sankaran, B. Jayaraman, A. Datta,
Z. Yang, D. Mavriplis, H. Saberi, M. Potsdam, D. O’Brien, R. Cheng,
N. Hariharan, and R. Strawn. Application of the helios computational
platform to rotorcraft flowfields. In 48th AIAA Aerospace Sciences
Conference. AIAA Paper 2010-1230, 2010.

[21] I. Wald. Realtime Ray Tracing and Interactive Global Illumination.
PhD thesis, Saarland University, 2004.

[22] I. Wald, H. Friedrich, A. Knoll, and C. D. Hansen. Interactive isosur-
face ray tracing of time-varying tetrahedral volumes. IEEE Trans. Vis.
Comput. Graph., 13(6):1727–1734, 2007.

[23] C. Wang, H. Yu, and K.-L. Ma. Application-driven compression for
visualizing large-scale time-varying data. Computer Graphics and Ap-
plications, IEEE, 30(1):59–69, Jan 2010.

[24] M. Weiler, M. Kraus, M. Merz, and T. Ertl. Hardware-based ray cast-
ing for tetrahedral meshes. In Proceedings of the 14th IEEE Visual-
ization 2003 (VIS’03), pages 44–, Washington, DC, USA, 2003. IEEE
Computer Society.

[25] M. Weiler, P. N. Mallon, M. Kraus, and T. Ertl. Texture-encoded tetra-
hedral strips. In Proceedings of the 2004 IEEE Symposium on Volume
Visualization and Graphics, VV ’04, pages 71–78, Washington, DC,
USA, 2004. IEEE Computer Society.

[26] A. Wissink, J. Sitaraman, V. Sankaran, D. Mavriplis, and T. Pulliam.
A multi-code python-based infrastructure for overset cfd with adaptive
cartesian grids. In 46th AIAA Aerospace Sciences Conference. AIAA
Paper 2008-927, 2008.

100

