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ABSTRACT

As a major component of volume rendering, the ray casting algo-
rithm is memory-intensive. However, most existing texture-based
volume rendering methods blindly map computational resources to
texture memory and result in an incoherent access pattern, causing
low cache hit rates in certain cases. The distance between samples
taken by threads of the same scheduling unit (e.g. a warp of 32
threads in CUDA), of the GPU is a major factor that affects the tex-
ture cache hit rate. Based on this fact, we present a new sampling
strategy, i.e. warp marching, which displays a novel computation-
to-core mapping. In addition, a double buffer approach is intro-
duced and special GPU operations are leveraged to improve the
efficiency of parallel executions. To keep a roughly constant ren-
dering performance when rotating the volume, we change our warp
marching algorithm, so that samples can be taken along different di-
rections of the volume. As a result, varying texture cache hit rates
in different viewing directions are averaged out. Through a series
of micro-benchmarking and real-life data experiments, we rigor-
ously analyze our sampling strategies, and demonstrate significant
performance enhancements over existing sampling methods.

1 INTRODUCTION

Scientific simulation often generates large scale volumetric
datasets, which are represented by discrete samples and rendered
with the ray casting algorithm. Interpolation among these discrete
samples is one of the most frequent operations. Since the texture
memory of GPU provides highly optimized tri-linear interpolation,
it is the obvious choice for data storage in volume rendering. Nu-
merous rays with a large amount of samples make the texture mem-
ory access a bottleneck of the ray casting, especially when deal-
ing with large volumes. Cache hierarchy for the texture memory
is built to alleviate this performance issue. In modern GPUs, such
as NVIDIA’s Kepler series, a cache-hit can be hundreds of times
faster than a cache-miss. In this paper, we focus on optimizing
texture cache performance, especially in a parallel computing envi-
ronment.

On the parallel architecture of GPU, massive threads are exe-
cuted concurrently. These threads are divided into atomic groups
when mapped to the GPU hardware. For example, in CUDA [11],
32 threads form a warp and it is mapped to one stream multiproces-
sor of the GPU. Threads of a group process the same instructions
and synchronize each step. For texture-based ray casting, the dis-
tance between samples taken by such a group of threads has signif-
icant consequences on the texture cache hit rate.

In this paper, we try to minimize the memory stride accessed
by an atomic group of threads rather than every single thread of
the GPU. To achieve this, we propose a new sampling strategy that
introduces a novel computation-to-core mapping. Our strategy pro-
vides cache-friendly texture memory access patterns and signifi-
cantly improves the cache performance, in certain viewing direc-
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tions. To enhance the GPUs’ resource utilization, a double buffer
accumulation approach for the new sampling strategy is proposed.
Also, the power of the newly introduced warp-level operations for
the recent NVIDIA Kepler architecture is leveraged. We further
average out the performance variations from different viewing di-
rections by concurrently taking samples along different directions
of the volume. In summary, three major contributions have been
introduced in this paper:

1. We analyze the influence of cache coherence on the ray cast-
ing algorithm through a set of benchmarks, and introduce a
new sampling strategy to improve the texture cache hit rate in
certain viewing directions.

2. Two hardware-oriented optimizations, double buffer accumu-
lation and warp-level operations, are presented to efficiently
utilize the computing resources of GPUs.

3. Meanwhile, an approach that maintains roughly constant ren-
dering frame rates regardless of the viewing direction is also
proposed.

2 BACKGROUND AND RELATED WORK

Due to the fast hardware-accelerated linear interpolation, texture
memory becomes the best choice to store volume data on GPU. The
volume mapped to the 3D texture is organized as many 2D slices
and inside each slice, z-curves [10, 19] are used to optimize the 2D
spatial locality (Figure 1).
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Figure 1: Recursive z-curve hierarchy of the texture memory.

We focus on the CUDA-capable NVIDIA GPU to illustrate our
new sampling strategy in this paper. The massive threads of the
GPU work in a single instruction multiple data (SIMD) mode. They
are organized as grids of blocks. Thread blocks are further divided
into warps of 32 threads when mapped to the GPU hardware. A
warp of threads is an atomic scheduling unit. If such a group of
concurrent threads access the texture memory at close memory lo-
cations, high texture cache hit rates are expected [11]. However,
when accessing across many slices or covering a big memory stride,
the texture cache hit rate will drop dramatically. Our new sam-
pling strategy tries to minimize the memory strides inside a warp of
threads.
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Ray casting [5] is a major component of the direct volume ren-
dering. The 3D texture-based implementation of this algorithm was
proposed in the early 1990s. Examples of such work include that
by Cullip and Neumann [2] and Cabral et al. [1]. Existing stud-
ies [3, 17] have demonstrated that view-aligned approaches with
3D textures [18] are superior to axis-aligned approaches with 2D
textures [14] in several aspects. However, view-aligned approaches
suffer from the penalty of texture cache. We focus on view-aligned
approaches and propose new sampling strategies to alleviate this
cache penalty.

The basic principle of volume rendering can be given by the vol-
ume rendering integral. A description of it can be found in [3],
which also gives a good overview of the basic methods used in vol-
ume ray casting. The volume rendering integral can be approxi-
mated with discrete algorithms that accumulate the color of a ray
by samples or by segments. In the latter case, pre-integration meth-
ods are frequently used, such as [4, 6]. No matter which method
is used, the basic operation on the fly is alpha blending [13]. The
blending operation is associative [8]. Ma et al. [9] take advantage of
this property and propose a binary-swap compositing algorithm to
effectively utilize the computing nodes of distributed systems. Yu
et al. [20] extend this work by proposing the 2-3 swap image com-
positing. In this paper, however, we also use the associative prop-
erty to composite samples along rays. Our composition is inside
a warp of threads. To keep more computing units (GPU threads)
active, a double buffer approach is proposed. This approach feeds
more work to each thread of the GPU and works in a pipeline man-
ner.

Sugimoto et al. [16] analyze the z-curve pattern and prove the
memory stride ratio along three directions of the 3D texture is 1:2:6.
They propose a dynamic approach by adjusting the thread block
shape, so that threads of the same warp cover a smaller memory
stride. However, due to the sampling limitation, their dynamic ap-
proach cannot guarantee a high texture cache hit rate in all view-
ing directions. Weiskopf et al. [17] design an algorithm that keeps
roughly constant frame rates regardless of the viewing direction
by reorganizing 3D volumes into bricks with different orientations.
This approach has to pre-process the volume data, which may not be
feasible in certain scenarios, such as for in-situ visualizations [7].
Also their approach requires the entire volume to be in the view
frustum. Choosing a proper resolution for bricks and the overlap
between neighboring bricks make the solution complicated. In this
paper, we propose an alternate approach, which overcomes these
shortcomings.

3 MOTIVATION

Our work is directly motivated by the cache performance of volume
rendering. The distance between samples taken from volumes is a
key factor that impacts the texture cache hit rate. Here we show
two major factors that affect this distance and design a benchmark
to demonstrate their effects.

3.1 Sampling Distance
Viewing Direction (Volume Orientation): In the existing GPU
implementations of the ray casting algorithm, samples taken by dif-
ferent threads are fitted into a plane, sampling plane. The plane
goes through the volume along a viewing direction from front to
back. Distance between samples on this plane is affected by the
viewing direction. When the direction is perpendicular to 2D slices
of the volume (Figure 2, f acing XY ), samples are close to each
other in the texture memory. However, when the direction is paral-
lel to the image stack (Figure 2, f acing ZY ), samples cover different
image slices and are far from each other in the memory space.
Ray Distance (Volume Image Ratio): The ratio between volume
dimensions and projected image resolutions also influences the dis-
tance between samples on the sampling plane. For example, when
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Figure 2: Effects of different viewing directions.

rendering a 10243 volume and facing the XY plane (shown in Fig-
ure 2) of the volume, if the projected image resolution is 5122, the
distance between pixels is the length of 2 voxels in orthographic
projection (assume the spacings along three dimensions of the vol-
ume are the same). If one ray maps to one pixel, the ray distance is
also the length of 2 voxels. Varying projected image resolutions re-
sult in different ray distances, as well as different distances between
samples taken from these rays.

3.2 Benchmark Design
We design a benchmark to demonstrate the effects of these two fac-
tors. The benchmark program is a standard implementation of the
semi-transparent volume rendering, such as the CUDA sample ‘vol-
umeRender’. In this benchmark, one ray is mapped to one pixel of
the projected image and one GPU thread works on such a ray to
accumulate color and opacity values for a pixel. Samples taken by
a warp of threads form a line or a plane (depends on the thread
block shape) that is always perpendicular to the viewing direction.
This warp line or warp plane goes through the volume from front to
back to take samples and accumulates color and opacity values for
a warp of pixels. We call this sampling strategy the Standard sam-
pling strategy throughout the paper and compare it with our new
sampling strategies.

To accurately collect the texture cache hit rate, several changes
are introduced to the benchmark program. The first one is to disable
the early ray termination and have rays march a fixed number of
steps, 512 in this case. This guarantees a fixed amount of workload
and rules out the effects of different transfer functions. Most of the
existing volume rendering implementations put transfer functions
into the texture memory, because linear interpolation is needed dur-
ing the classification [3]. The size of the transfer function is usu-
ally small, but it is accessed frequently. In order to reflect the tex-
ture cache hit rate from only accessing the volume data, the second
change is to put the transfer function into the constant memory (or
the shared memory) of the GPU. Third, an orthographic projection
is used to keep a constant ray distance during marching. Finally,
to eliminate the impacts from different volume data sets, an 8-bit
10243 volume with random density values is generated. Sampling
distance along rays is always fixed at 0.5 voxel length throughout
the paper. The projected image resolution is fixed at 5122, so all ex-
ecutions trace 5122 rays. Distance between rays is varied by tracing
different percentages of the volume. For example, if the 5122 rays
cover the entire volume, distance between neighboring rays is 2
voxels length. However if they trace a quarter of the volume, dis-
tance between rays is 1 voxel length. We use 256 threads per block
for all experiments (both benchmark and real-life data experiments)
in this paper.

Figure 3 shows results collected from the benchmark. As the
distance between rays increases, the texture cache hit rate drops
when facing the ZY plane, because samples from neighboring rays
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Figure 3: Effects of different viewing directions and different ray dis-
tances. The thread block shape is 16×16.

cover more 2D slices of the volume. The decline is insignifi-
cant when facing the XY plane, because samples are still on the
same slice and the memory stride is small. Texture cache hit
rates (metric tex cache hit rate) and L2 cache hit rates (metric
l2 texture read hit rate) reported in this paper are collected by the
CUDA Profiler Tools Interface (CUPTI) [12] on an NVIDIA GTX
GeForce TITAN GPU with 6 GB device memory. The CUPTI in-
troduces some performance overheads, so frame rates are collected
from separate executions with the CUPTI disabled.

4 WARP MARCHING ALGORITHM

To address the cache related performance issues in the standard
sampling mechanism, we introduce a novel parallel sampling strat-
egy called warp marching. This approach introduces a unique
computation-to-core mapping in the parallel algorithm design. It
significantly mitigates the effects of viewing direction and ray dis-
tance to the texture cache performance.

(a) Standard

(b) Warp Marching

cycle 1 cycle 2

cycle 1 cycle 2

Figure 4: Different sampling strategies: (a) a warp of threads work
on a warp of pixels; (b) a warp of threads work on one pixel. The
warp size is 4 in this figure.

The new strategy samples the volume along rays. Figure 4 (b)
demonstrates this approach, in which a warp of threads work on
one pixel (or ray). Color and opacity blending for a pixel is done
in parallel inside the warp. During each cycle, the new sampling

strategy marches a warp of samples along the ray, so we call it warp
marching. The algorithm works along the same lines as [8], which
breaks a ray into a series of segments and composites these ray
segments.

4.1 Algorithm Design
In general, there are two steps in the ray casting algorithm: (1) ray
bounding-box intersection tests; (2) marching rays and accumulat-
ing color and opacity values. We only focus on the second step
when applying our new sampling strategy.

The warp marching algorithm needs to handle two cases: (1)
the samples taken by a warp of threads, all have density values of
zero; (2) some or all samples have non-zero values. A binary bit is
used for each thread to represent the state of a sample and the warp
voting function, i.e. ballot(), is used to reflect the state of the
entire warp. For case (1), the warp voting function returns zero and
the warp of samples are skipped. For case (2), a non-zero value
is returned and contributions of the warp of samples are needed
to be integrated to the final pixel. The associative property of the
front to back color blending has been verified [9]. Based on this
property, blending a warp of samples can be done using a reduction
method, as illustrated in Figure 5. For simplicity, we assume 8
threads per warp. Step 1 of each warp cycle is to take samples and
fill the buffers of threads with color and opacity values. Reduction
starts from step 2 and continues till step 4. One extra memory unit
is required for a warp to store the reduction value (intermediate
result). In our implementation, a float4 variable is used to store
the RGBA value of each sample, so 9 such float4 (8 for 8 threads
of the warp and 1 for the intermediate result) are needed in total, and
they are allocated from the shared memory. Since each thread only
needs one buffer from the shared memory, we call this approach
single buffer shared (SBShared) warp marching.
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Figure 5: Single buffer approach (8 threads per warp).

4.2 Hardware-Oriented Optimization
Although reductions in the SBShared approach are performed in
parallel, the number of active threads reduces by half after each
step. To keep more threads active, a double buffer approach is in-
troduced. Furthermore, we consider efficient warp shuffling oper-
ations to accelerate the communication among threads of the same
warp.

4.2.1 Double Buffer Approach
In the SBShared approach, the number of active threads decreases
because the workload is reduced by half after each step. To alleviate
this problem, we delay the blending process until a warp receives

21



0 0 0 0 0 0 0 0 

cycle 1 

active  
threads 

8 

8 

8 

8 

8 

8 

2 

3 

cycle 2 
1 

2 

cycle 3 
1 

2 

1 8 

cycle 1 cycle 2 cycle 3 

buffer 1 

buffer 2 

sample 
4 

2 

1 

step 

0 0 0 0 0 0 0 0 

2 

3 

1 
cycle 1 

4 

5 

6 

7 

8 

8 

8 

4 

2 

1 

8 

step 

opacity value used for 
early ray termination 

Figure 6: Double buffer approach (8 threads per warp). Sub-figure on the left shows the early ray termination mechanism.

new data. Before the reduction happens at step 2 (Figure 5), the
warp of threads takes another warp of samples (Figure 6: cycle 1,
step 2). Each thread needs two buffers to store two sample values
now. Since these buffers are from the shared memory, we call this
approach double buffer shared (DBShared) warp marching.

The double buffer approach is illustrated in Figure 6. In the first
cycle, all threads of the warp initialize their first buffer to 0 (cycle1,
step 1). Then threads of the warp take samples, derive color and
opacity values from the transfer function and load them to their
second buffer (cycle1, step 2). Now, every warp has 16 buffer units
with values. 8 threads perform one step reduction and write the
results back to their first buffer (cycle1, step 3). In these steps, all
threads of the warp are active. In the second cycle, threads of the
warp load color and opacity values to their second buffer (cycle2,
step 1). After that, again, all threads work on one step reduction and
write results to their first buffer (cycle2, step 2). All cycles from the
third cycle onwards are similar to the second. In order to derive the
final integrated value, some threads in the last warp cycle will be
inactive (as shown in the red rectangle), but most of the time, the
whole warp is active.

One problem for the DBShared is that the early ray termination
does not work, because the exact integrated value cannot be derived
at each warp cycle. In other words, the DBShared approach delays
the termination of a ray by 3 warps (log2 8). Compared to imple-
mentations with the early ray termination, the DBShared performs
24 extra texture fetching operations. Fortunately, the early ray ter-
mination only relies on accumulated opacity values, so we can still
do the “delayed blending” for color values, though the accumulated
opacity values will have to be derived at each warp cycle. The sub-
figure on the left of Figure 6 shows this repair. After step 3, opacity
values are copied from buffer 1 to buffer 2 and the opacity blending
is then performed there. Instead of blending 8 float4 (in the SB-
Shared), the DBShared blends 8 float. So it reduces the amount
of work that few threads of the warp will work on. Based on the
final blended opacity value, the algorithm decides whether the ray
should be terminated or not.

4.2.2 Warp-Level Operation
Our warp marching strategy can benefit from efficient warp-level
operations. In previous descriptions, we have shown how the warp
voting function helps in reflecting the state of the entire warp. Here
we demonstrate how shuffling operations help in efficient data com-
munication among threads of the same warp. In these shuffling ap-
proaches, data is not read from the shared memory but is shuffled
from the registers of other threads.

Single Buffer Shuffling (SBShuffle): Instead of allocating 9
float4 from the shared memory, the SBShuffle approach allo-
cates a float4 from the registers of each thread. One thread of
the warp needs to create one extra float4 to store the intermedi-
ate result and this result will be broadcast ( shfl()) to all other
threads of the warp at each iteration. Alternately, all threads can
have a copy of the intermediate result. In that case, the broadcasting
is avoided, but more registers are required. Algorithm 1 illustrates
how the reduction (Figure 5, step 2 to 4) is performed by shuffling
operations inside a warp. The shuffling width, i.e. variable width in
Algorithm 1, is the number of threads in the warp.

Algorithm 1 Blending with shuffling operations.
1: for i⇐ width/2; i≥1; i/=2 do
2: // shfl(variable, id, width)
3: sample1⇐ sh f l(color, threadIdx.x∗2,width)
4: sample2⇐ sh f l(color,(threadIdx.x∗2)+1,width)
5: if threadIdx.x<i then
6: color⇐sample1+(1−sample1.w)∗sample2
7: end if
8: end for

Double Buffer Shuffling (DBShuffle): For the double buffer shuf-
fling approach, each thread creates two float4 from its register
space. The accumulated opacity value (for early ray termination)
can be stored in the second buffer of the first thread. In the re-
duction process (Figure 6: cycle 1, step 3), all threads of the warp
shuffle their buffer 1 values to the first half warp of threads, and
this half warp performs one step reduction there. Then all threads
shuffle their buffer 2 values to the second half warp of threads, and
this half warp processes another reduction. Divergent branching
happens here due to different shuffling sources. Consequently, this
step is divided into 2 steps and half warp is active in each.

4.3 Benchmark Result
The warp marching algorithm and its optimizations are integrated
to the benchmark we designed in section 3. All experiment set-
tings are the same, unless explicitly mentioned. The performance
improvements from two hardware-oriented optimizations are de-
scribed first. We then establish how the new sampling strategy ad-
dresses the two problems mentioned in section 3.
Optimization: The results shown in Figure 7 indicate the shuffling
approaches are always better than the shared memory approaches.
Double buffer approaches are better than single buffer approaches
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Figure 7: Speedup of different optimizations. Results are collected
when facing the ZY plane of the volume.

when rays march by taking a larger number of steps. The number
of active threads in the final part of the double buffer approach still
lessens by half at each step (Figure 6). However, this only happens
in the last warp cycle. When rays march more steps, the percentage
of this part becomes small. On the contrary, this problem happens
in every cycle of the single buffer approach. As rays march more
steps, the time that threads are inactive increases, so double buffer
approaches become better.
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Figure 8: Effects of different viewing directions and different ray dis-
tances in the DBShuffle approach.

Viewing Direction and Ray Distance: Figure 8 shows the results
of the DBShuffle (Rays march 512 steps, so we use the DBShuf-
fle). The DBShuffle approach is insignificantly affected by the ray
distance. However, similar to the standard sampling strategy, it is
also affected by the viewing direction. Facing the ZY plane is better
than facing the XY plane of the volume. This is because, when fac-
ing ZY , samples are on the same slice. Meanwhile, since marching
step length along rays is fixed at 0.5 voxel length (usually less than
1 voxel length to satisfy the Nyquist frequency), the texture cache
hit rate of facing XY case is not dramatically low.

The rendering performance when facing the ZY plane of the vol-
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ume is not significantly better than that when facing the XY plane,
though the texture cache hit rate is obviously higher. To explain
this problem, we have to introduce the performance of L2 cache.
Figure 9 shows the L2 cache hit rate of read requests from texture
cache (CUPTI metric l2 texture read hit rate) of the standard and
the DBShuffle approaches. When using DBShuffle and the view is
facing XY , the L2 cache hit rate is only marginally affected by the
ray distance. In Figure 8, although the texture cache hit rate when
facing XY is not as good as it was when facing ZY , facing XY case
always has a high L2 cache hit rate. When requested data is missing
from texture cache, the data can quickly be found from L2 cache,
so the performance is still good. On the contrary, for the standard
sampling method, when texture cache hit rate drops (Figure 3), L2
cache hit rate also drops, so the performance decreases.

5 3D WARP MARCHING

We have shown that the texture cache hit rate can be optimized
when facing certain viewing directions. However there is not a sim-
ple approach that can maintain a good and roughly constant render-
ing performance when taking all viewing directions into consider-
ation. Weiskopf et al. [17] try to address this problem by reorga-
nizing volumes to small bricks with varying directions. Instead of
reorganizing data, we take a different approach by distributing sam-
ples taken by a warp of threads along different directions. In this
case, warp shape is a 3D volume.

In order to organize the warp shape as a volume, two small
modifications are applied to the warp marching (only the shuffling
approaches are discussed here, since they perform better than the
shared memory approaches). The first modification is to reduce the
number of samples taken along rays (depth direction) by a warp
of threads. This can be done by changing the shuffling width, i.e.
the variable width in Algorithm 1. Changing this width breaks a
warp of threads into several groups with same number of threads in
each. One such group is mapped to one pixel (or ray) in ray casting
and the number of groups is the number of pixels that the warp will
cover. The second modification is to organize these pixels into a 2D
plane, which can be done by carefully organizing the shape of the
thread blocks. For example, if the warp size is 32 and the shuffling
width is 8, the warp will cover 4 pixels (or rays). 8 threads work on
one ray and the number of samples taken along the viewing direc-
tion is 8. The thread block size is 256, so one block will cover 32
pixels. When organizing these pixels into 2 columns by 16 rows,
one warp will process two rows of them. The warp shape in this
case is 2×2×8 (i.e. the number of samples taken along the horizon-
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tal, the vertical and the depth direction is 2, 2 and 8), and the block
shape is 2×16×8.
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Figure 10: Results of rotating the volume around X, Y and Z 180◦.
The texture cache hit rate and the L2 cache hit rate from SBShuf-
fle and DBShuffle implementations are the same, so lines are over-
lapped in the top two figures.

Except the number of samples along different directions, the dis-
tance between neighboring samples should also be taken into con-
sideration. In the benchmark settings, the distance between rays
is 2 voxels length, and distance between samples along rays is 0.5
voxel length. So the sampling distance along the horizontal, the ver-
tical and the depth direction is the length of 2 voxels, 2 voxels and
0.5 voxel respectively. Multiplying this distance with the number
of samples taken along each direction is the number of voxels that
one warp will access along that direction. For example, warp shape

4×2×4 covers 8, 4 and 2 voxels along three directions. There are
six possible 3D warp shapes: 4×4×2, 4×2×4, 2×4×4, 8×2×2, 2×8×2
and 2×2×8. Among them, shape 2×2×8 covers the same number
of voxels (4 voxels) along three directions. So, its variance of tex-
ture cache hit rate in different viewing directions should be small.
We use the same benchmark to demonstrate the texture cache hit
rate, L2 cache hit rate and overall rendering performance of this 3D
warp shape, in comparison with the standard method (warp shape
16×2×1) and the warp marching method (warp shape 1×1×32) in
Figure 10. Results are collected when rotating the experiment vol-
ume around X , Y and Z axis 360◦ respectively. Due to symmetry,
only 180◦ rotation results are shown. To differentiate the original
warp marching from 3D warp marching, we call it 1D warp march-
ing, since the warp shape is 1D.

Figure 10 gives both the SBShuffle and the DBShuffle results for
1D and 3D warp marching. The texture cache hit rate and the L2
cache hit rate of these two types of implementations are exactly the
same (lines are overlapped). As we expected, the texture cache hit
rate of 3D warp marching shows slight variances during rotation.
Consequently, the 3D warp marching maintains a roughly constant
frame rate. On the contrary, the standard method demonstrates a
big performance variance during rotation. A deep trough appears in
the results due to its poor texture cache and L2 cache performance
when rotating around the Y axis. The texture cache hit rate of 1D
warp marching is not high when rotating around the X or the Z axis,
but its L2 cache performs very well in these two rotations. As a
result, a roughly constant frame rate is also achieved. The projected
image resolution is not always 5122 during these rotations. When
the volume is rotated to 45◦ or 135◦, the projected image resolution
becomes the largest. Heavier workloads lead to lower frame rates
at these angles.

For the standard method, the texture cache hit rate also drops
when rotating around the Z axis. The thread block shape of the
standard method is 16×16, so a warp of 32 threads take 16 samples
along the X axis and 2 samples along the Y axis when facing the XY
plane. After rotating around Z 90◦, 16 samples are taken along the
Y axis and 2 samples are taken along the X axis by a warp. Memory
stride along the Y axis is larger than that along the X axis [16], so
texture cache hit rate drops.

6 APPLICATION

In this section, we describe how to apply our cache-aware sampling
strategies to an existing volume rendering algorithm and demon-
strate results with real-life data sets. The early ray termination is
enabled and the transfer function is moved to the texture memory.
Images are rendered with a resolution of 10242. To reflect the ray
distance, we list the volume dimensions and the projected resolu-
tions (active resolutions) in Table 1. The volume image ratios are
also shown. However, since results in this section are collected in
perspective projection, these ratios are not exactly the distances be-
tween rays.

XY ZY

vhf head
Volume Dimension 2048×1216 1203×1216

Projected Resolution 885×526 609×616

Ratio 2.3×2.3 2.0×2.0

vhm body
Volume Dimension 2048×1024 1878×1024

Projected Resolution 494×247 1015×183

Ratio 4.1×4.1 1.9×5.6

Table 1: Volume dimensions, projected image resolutions (active res-
olutions) and volume image ratios.
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vhf_head (8-bit, 2.8GB)               vhm_body (8-bit, 3.8GB) 

Figure 11: The Visible Human female (head) and Visible Human
male (full body) data sets. Their dimensions are 2048×1216×1203 and
2048×1024×1878; spacing ratios along X Y and Z for them are 1:1:1
and 1:1:3 respectively.

Lum et al. [6] propose a high quality pre-integrated volume ren-
dering algorithm with the standard sampling strategy. We replace
the sampling strategy with our warp marching methods. There is
no specific reason to choose this algorithm. Our sampling strate-
gies can also be applied to other texture-based volume rendering
algorithms. In order to do the pre-integrated volume rendering,
each thread needs 2 density values (from front and back of the
slab [15]). So, every thread of the warp takes one sample and shuf-
fles ( shfl down()) the sample to its neighboring thread. Figure
11 demonstrates the rendering results using the technique of Lum
et al. with our 1D warp marching.

vhf head vhm body

Facing XY ZY XY ZY

Standard 13.93 2.66 24.42 4.74
SBShuffle 7.98 10.07 20.60 17.72
DBShuffle 8.49 11.12 23.42 19.91
Speedup 0.61 4.18 0.96 4.20

Table 2: Frame rates (fps) of different sampling methods.

1D Warp Marching: Table 2 shows the results of using different
sampling strategies in two viewing directions. When facing the XY
plane of the volume, the standard method achieves higher frame
rates. Based on our benchmark analysis, this is expected, because
texture cache hit rate of the standard method is higher. The per-
formance of warp marching is not as good as the standard one, but
it is neither extremely poor. Since sampling distance along rays is
fixed at 0.5 voxel length, the texture cache hit rate of warp march-
ing in this viewing direction is not very low. In addition, L2 cache
performs well (Figure 9). When facing the ZY plane, warp march-
ing achieves about 4 times the speedup than the standard method.
In this direction, warp marching has a high texture cache hit rate,
whereas the standard sampling strategy suffers from its poor tex-
ture cache and L2 cache performance. For both data sets, the dou-
ble buffer approach performs better than the single buffer approach
(thread block shape of the standard sampling method is 16×16).
3D Warp Marching: Results of the 180◦ rotations around three
axes are shown in Figure 12. We keep the entire volume inside the
view frustum during these rotations. Since vhm body has a smaller
projected image resolution (the projected resolutions when facing
the XY and ZY plane are shown in Table 1), its performance is better
than the performance of vh f head in both the standard sampling
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Figure 12: Results from 180◦ rotations. Top: results from vhf head;
bottom: results from vhm body.

and the warp marching method. Compared to the standard method,
both 1D and 3D warp marching maintain roughly constant frame
rates during rotation.

7 CONCLUSION AND FUTURE WORK

In this paper, we demonstrate the significant impact of cache hit rate
and design a cache-aware sampling strategy, i.e. warp marching, for
the ray casting algorithm. The strategy uses the associative prop-
erty of color blending in volume rendering and takes advantage of
hardware-accelerated warp voting and warp shuffling operations. A
double buffer approach is proposed to reduce the number of inactive
threads. The 3D warp marching maintains a roughly constant tex-
ture cache hit rate regardless of volume orientation. Consequently,
it only shows slight performance variances during rotation.

Our 1D and 3D warp marching algorithms are presented on a
single-GPU workstation and data sets can be loaded into the device
memory. Such a scenario is unlikely to happen when visualizing
outputs from large scale scientific simulations, where data sets usu-
ally cannot be fitted into the memory of a GPU, and multiple GPUs
or multiple nodes are involved in the computation and visualization.
In the future, we will explore how the new computation-to-core
mapping fashion can benefit these real-life visualization scenarios.
Specifically, we would like to extend the warp marching to dis-
tributed systems and integrate out-of-core techniques to deal with
the large size of volumes. Our discussion in this paper is limited to
CUDA-capable NVIDIA GPUs. Extending the work to other types
of GPUs, which may have varying number of threads in a warp, is
also a good direction for future exploration.
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