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ABSTRACT 
This application paper presents a visual analytics tool designed to 
explore large-scale scientific data modeled after a natural climate 
phenomenon. The data are modeled on a high-performance 
computer and exported to a personal computer for interactive 
visualization. The system is co-designed by visual analytics 
researchers and domain scientists after a year of rapid prototyping 
and evaluation of multiple information and scientific visualization 
techniques using a model dataset that includes both scalar fields and 
flow fields. Five information-visualization and one scientific-
visualization techniques are included in the visual analytics system 
to balance analytical effectiveness and computation time for large-
scale interactive exploration. The paper discusses the system 
design, explains the design rationale, and shares computation 
performance and results of different visualization techniques. The 
primary contribution of this application paper is to show that we 
can interactively and effectively visualize a large amount of 
scientific model data on a modest desktop computer. The 
computation performance results of the individual visualization 
techniques and the overall system also provide benchmark 
references for other large-scale visualization development efforts. 

Keywords: Visual analytics application, large data analytics and 
visualization, climate analytics, scientific modeling. 

1 INTRODUCTION 
This application paper presents a large-scale visual analytics tool 
co-developed by visual analytics researchers and climate domain 
scientists to analyze large-scale scientific model data. Among the 
design and analytical challenges of the development are the size of 
the underlying data and the associated impacts to large-scale 
climate model analytics. 

The design of our tool uses a multifaceted visualization approach 
that integrates multiple visualization techniques through interactive 
brushing and linking. Because our coordinated-visualization design 
uses multiple techniques to show different aspects of the dataset, 
the number of display values stored in different data structures in 
the memory for optimal visualization can be multiple times larger 
than the number of actual data values. For example, when we 
analyze hundreds of millions of floating point numbers in our 
discussion, over two billion numeric values are navigated and 
displayed on a dual-panel screen during interactive exploration.  

The large number of data values creates an obvious list of hurdles 
from display-pixel limitation to delayed system-response time. As 
we describe later, some of our visualization solutions that address 
the pixel limitation problems would actually create new 
computation requirements that further challenge the interactive 
time requirement.  

The problem of climate modeling itself is indeed a much larger 
data problem than what we describe in the paper. Our work is a part 
of the U.S. Department of Energy (DOE) Exabyte Data 

Visualization and Management program [3] that promotes 
scientific discovery through analytical computation. We generate 
our high-resolution climate model data on a Leadership Computing 
Facility computer at the National Energy Research Scientific 
Computing Center (NERSC) [9]. Interactively visualizing a dataset 
on a supercomputer with hundreds of thousands of cores is 
theoretically possible but practically not feasible for the domain 
scientists. Visualizing a scaled-down version of an extreme-scale 
dataset on a desktop computer is one of the few viable options 
today. We further elaborate on this limitation and some of the other 
extreme-scale data challenges in [17]. 

The visualization techniques presented in the paper have been 
selected by the domain scientists from a series of both scientific and 
information visualization technique candidates through a year-long 
rapid prototyping effort. In the end, we include 3D scatterplot 
visualization, parallel coordinates, matrix of pairwise scatterplots, 
multidimensional scaling (MDS) scatterplot, a global visualization 
with particle tracer visualization, as well as additional profile 
visualizations to study physics and math of the model in the tool. 
Notably, information visualization techniques excluded are force-
direct graph layout, heatmap, and many other pixel-filling-based 
visualization techniques. The selected techniques, while popular 
among information visualization researchers, have rarely been 
found in prevailing large-scale climate analytics tools such as those 
discussed in Section 2.1. 

The primary contribution of this application paper is to show that 
we can interactively and productively visualize such a large amount 
of scientific model data using a set of prevailing and intuitive 
information visualization techniques on a modest desktop 
computer. It is uncommon to find a similar combination of 
visualization techniques to climate model data of this scale in the 
climate analytics community. Other contributions of the paper 
include the computation and analytical performance benchmark 
results that can serve as reference guides for other researchers when 
visualizing large-scale data on a desktop computer. 

2 RELATED WORK 
We highlight selected work found in large-scale climate, geo, and 
earth visualization areas. 

2.1 Climate Modeling Visualization Tools 
Visualization has played a critical role in climate change model 
studies for many years. There are a number of prevailing 
visualization tools in the public domain developed by various 
research groups; these tools are widely accepted by the climate 
modeling community.  

Ncview [14] is a visualization tool customized for quick and 
simple netCDF data visualization. The tool supports mainly 2D 
techniques and line plots. The tool is used by many to visualize 
modest-sized climate model datasets. Ncview is developed at and 
supported by Scripps Institution of Oceanography.  

Another popular climate visualization tool is GrADS [6]. 
Although it has limited capability in both computation and 
visualization, the lightweight system is popular for modest-sized 
dataset visualization. GrADS is developed at and supported by the 
Center for Ocean-Land-Atmosphere Studies (COLA). 

VAPOR [15] is a newer and more powerful climate visualization 
tool that supports large-scale scientific visualization techniques for 
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the astro-geo-science computation fluid dynamic (CFD) 
community. Both VAPOR and a specialized language for climate 
visualization known as NCL [12] are developed at and supported 
by National Center for Atmospheric Research (NCAR). The NCL 
website [12] has a list of additional visualization tools available for 
climate visualization. 

Ferret [5] is another prevailing visualization tool that supports 
interactive explorations of climate model datasets with three to four 
data parameters at a time. Among the unique features of the tool is 
a Mathematica-like mathematical expression language for 
calculation and analysis. Ferret is developed at and supported by 
the National Oceanic and Atmospheric Administration (NOAA)’s 
Pacific Marine Environmental Lab. 

2.2 Geo- and Earth-Science Visualization Research 
Individual visualization techniques described in this paper have 
also been used to study other geo- and earth-science problems. 
While not described as analytical tools like those discussed in 
Section 2.1, they represent cutting-edge innovations in applying 
visualization to geo- and earth-science related problems. 

Andrienko and Andrienko [1] use Sammon Projection, which is 
a non-linear multi-dimensional scaling technique, to cluster 
geographical objects. Dransch et al. [4] present a visual analytics 
design study to analyze geo-science and geo-information models. 
Kehrer et al. [8] discuss the heterogeneous scientific data 
challenges in interactive visual analytics. Blaas et al. [2] use the 
parallel-coordinates technique to visualize hurricane models. 
Muigg et al. [11] also use the parallel-coordinates technique to 
visualize fluid dynamic data, which are commonly found in earth-
science models such as ground water or atmospheric simulations. 
All these apply information visualization techniques to analyze 
scientific data. 

3 MODELING, ANALYTICS, AND COMPUTATION  
This section provides information on the scientific data model, 
analytical problem, and hardware platform involved in the large-
scale visual analytics study. 

3.1 Data Modeling and Pre-Processing 
The climate model data used in this study are time-varying 3D 
curvilinear model data containing both scalar fields (such as 
temperature and moisture) and flow fields (such as wind) 
parameters. Generating the model data took about 250,000 CPU 
hours on a Leadership Computing Facility computer at NERSC [9]. 
For analysis on a desktop computer, the data were scaled down 
using multiple temporal and spatial compression schemes on the 
same computer before they were exported to the desktop computer. 
Only thirteen parameters—time, elevation, longitude, latitude, 
velocities (in upward, downward, north, south, east, and west 
directions), ice, vapor, and cloud moisture—are used in this visual 
analytics study. 

Structure-wise, the climate model data contain 120 time steps of 
3D volume (64×32×50 = 102,400) data for each of the 13 data 
parameters (i.e., 102,400×120×13 = ~160 million). Because our 
design uses a coordinated visualization approach with multiple 
visualization techniques that include 1) 3D volume display (1 time), 
2) parallel coordinates (1 time), 3) pairwise scatterplot matrix with 
5 parameters (15 times), and 4) a multidimensional scaling (MDS)-
based scatterplot (1 time), our tool can interactively display and 
manipulate over 160 million×18 = ~2.9 billion numeric values 
stored in different memory structures during the exploration. 

3.2 Analytical Problem 
Although our system is designed for general climate model 
analytics, the paper uses a climate phenomenon known as the 

Madden-Julian oscillation (MJO) [10] for demonstration purposes. 
In regional climate studies, MJO is the primary mode of large-scale 
intraseasonal variability in the tropics. Our regional climate model 
[7] realistically simulates the two MJO episodes observed in Asia 
during the winter of 2007/08 for 120 days. Analysis of these two 
cases shows that instabilities and damping associated with 
variations in diabatic heating and energy transport work in concert 
to provide the MJO with its observed characteristics. 

From a visual analytics point of view, MJO involves a sequence 
of very slowly time-evolving (time varying) climate features, 
which include certain patterns of convection, ice, cloud, and vapor 
moisture (weighted semantic combination), and move across an 
open geographic space (geospatial) around mid-atmospheric levels 
(spatial). We show later that no one individual visualization 
technique can fully address multiple analytical aspects of the 
underlying problem. 

3.3 Desktop Computer Hardware 
For the visual analytics study, we use a Dell Precision T7500 Quad-
core Xeon workstation with 48 GB of memory running Windows 
7. With the exception of data I/O, our C++/OpenGL/Qt based 
program is widely parallelized among the eight Xeon cores. We use 
a dual 30-in desktop panel display with 2×2560×1600 pixels in our 
study. 

4 VISUAL ANALYTICS OF LARGE-SCALE CLIMATE MODEL 
This section describes the design and development of our large-
scale climate model visual analytics system. 

4.1 Design Criteria, Requirements, and Rationale 
We present a number of design criteria and requirements followed 
by a brief discussion of our solutions. Supporting interactive 
response time and maximizing analytical capability are at the top 
of our development priorities. Because the system is co-designed 
by both visual analytics researchers and domain scientists, 
balancing the time and analytics demands on a desktop computer 
often becomes a challenge itself.  

Multifaceted Analytics: We mentioned earlier in Section 3.2 
that the temporal, spatial, geo-spatial, and semantics facets of the 
analysis require us to use multiple techniques to address different 
analytical aspects. The multifaceted requirements demand multiple 
visualization techniques that coordinately support aggregations and 
reasoning of all different analytical perspectives—time, weighted 
semantic combination, geospatial, and spatial—simultaneously. 

Interactive Brushing: Climate modeling scientists often study 
complicated physics and their compound effects. Being able to 
visually aggregate potentially “every” individual data entity is 
highly desirable and sometime critical for data exploration. Data 
brushing, by its interactive nature, mostly satisfies the aggregation 
demand. In our design, the scientists can brush any visualization, 
including data shown in 3D volumes, using mouse selections.  

Information Visualization: Many scientific visualization 
techniques do not support interactive data brushing directly. The 
above visual brushing requirement leads us to extensive use of 
information visualization techniques, which often show discrete 
data values explicitly for effective data brushing and aggregation. 
However, we have found no simple alternatives that visualize flow 
field data without using scientific visualization techniques such as 
a 3D flow field particle tracer [13].  

3D Time Series Visualization: MJO is a slowly moving 
localized feature that evolves over an extended period of time. After 
experimenting with different visualization options, we found that 
displaying a series of 3D volumes, which show the aggregated 
entities spatially in each volume and temporally in different 
volumes, is the most effective analytics technique in our 
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application. We have tried animation in our study but the attempt 
failed to capture the attention of the domain scientists. It was 
cumbersome for the scientists to interact with an animation and 
conduct multifaceted exploration all at the same time.  

Semantic Brushing: Visual brushing can only brush data that 
are arranged contiguously in certain orders on a display. One option 
to overcome this limitation is to semantically change the 
arrangement of the data visualization layout. In our system, we 
represent the multivariate data records as “weighted” data vectors 
and then use MDS to generate a scatterplot that clusters similar data 
vectors together for weighted semantic combination brushing. This 
is a powerful but also computationally expensive visualization 
technique.  

Binning and Aggregation: The number of display values in our 
study (~2.9 billion) is far more than the number of available display 
pixels (8 to 15 million). We use dynamic binning extensively to 
collapse neighboring values and subsequently speed up the drawing 
and visualization times. However, brushing binned data also causes 
additional computation requirements. Because we bin individual 
data parameters separately (for optimal parallelization), we have to 
put extra computational effort in determining if a record is selected.  

Interactive Response Time: We first identify a set of working 
visualization techniques for effective climate analytics and then 
determine the implementation of the parallel algorithms that 
maximize the multithreading computation capability of the Quad 
Zeon processors. The input data size plays a critical role in 
determining the interactive response time requirement. We conduct 
a series of performance studies (as described in Section 6) to 
determine the optimal or preferred data size that our visual analytics 
tool can perform interactively. The result becomes a benchmark 
data size for our high-performance computing (HPC) model 
program to decide the amount of data exported to the desktop 
computer. 

4.2 Scalable Visualization & Flow Field Discretization 
We mentioned in Section 4.1 that we use binning to reduce the data 
size for visual analytics. But conventional binning approaches are 
normally applied to discrete scalars such as time or sensor readings. 
One option to analyze continuous flow field data using traditional 
information visualization techniques is to discretize the flow data 
and project it into a scalar data structure.  

For example, Figure 1 shows three stages of progressive 
abstractions that transform a 3D flow field dataset (in Figure 1a) to 
a flow graph structure (in Figure 1b), then a set of numeric graph 
signature vectors [16] that characterize the connectivity of the flow 
graph in Figure 1c, and finally an MDS-based scatterplot that 
depicts the similarities of the flow graph signatures in Figure 1d.  

The flow field discretization process shown in Figure 1 has 
multiple advantages for big data visual analytics:  

• Memory Footprint: The memory footprints of the underlying 
structures consistently reduce from Figures 1a to 1d—good 
news for big data visual analytics in general. 

• Newly Gained Semantics: Figure 1b provides additional 
graph topology information such as the longest flow line of 
the 3D flow field. Figure 1c allows users to compare the 
similarities among the graph signature vectors based on their 
numerical values and user preferences. Figure 1d supports, for 
example, clustering analysis of the signature vectors. 

• Interactivity: In Figure 1a, we can only pan and zoom the 
graph structure. In Figure 1b, we can also highlight a particular 
node or set of nodes in the 3D space. In Figure 1c, we can now 
sort or classify different types of local graph structures (or 
flow features) and highlight their similarities or dissimilarities. 
Perhaps the most important gain of Figure 1d is that we can 
now precisely brush a set of similar structures and study their 
common characteristics.  

We use a simplified 2D example in Figure 2 to illustrate the 
concept of transforming a 2D flow field to the 2D flow graph. A 
flow area (or volume in 3D) is divided into neighboring blocks. One 
of these blocks is shown in red in Figure 2. A weighted edge is 
created between every pair of adjacent nodes (or blocks) in case a 
rendering seed moves from one block to the adjacent one. In the 
example highlighted in green in Figure 2, eight seeds are in the 
source block (along the block edges) and six of the eight seeds 
move to the destination block on the right (and thus a weight of 
6/8). Additional weight definitions can further be included for 
different applications. By using different block sizes, we create a 
coarse-to-fine data hierarchy that supports multiscale visual 
analytics.  

4.3 Multifaceted Coordinated Visualization 
Six different visualization techniques are included in the system. 
This section gives a “very” brief overview of the individual 
visualization tools. Except for the 3D flow field visualization, all of 
the tools support interactive brushing through either mouse clicking 
(for individual values) or freehand lasso (for a set of values).  

3D Volume Time Series: This visualization contains a series of 
3D volume cubes that shows the brushed data in 3D spaces 
arranged along the timeline. Users can rotate, zoom, and pan the 
flow graphs within the cubes using a mouse. Figure 3A shows a 
snapshot of 120 3D volume cubes that represent 120 model time 
steps. Each 3D volume cube shows the corresponding flow graphs 
(with the graph links turned off in this example). The design 
supports both spatial and temporal explorations in one 
visualization.  

Parallel Coordinates: The parallel-coordinates visualization 
(Figure 3F) supports multiple brushes of an individual parameter or 
aggregate query of multiple parameters. Color blending is used to 
show the overlaps between different brushed values. For reference, 
a color-blending chart is shown in Figure 3D. The parallel-
coordinates visualization supports both data brushing (query) and 
linking (results). 

Figure 2: Transforming a flow field (left) to a flow graph (right). 

Figure 1: Transformation of a 3D flow field in a) to a 3D flow graph 
in b), to a set of numeric flow graph vectors in c), and finally to a 
scaling-based visualization in d). 
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Matrix of Scatterplots (MOS): The MOS visualization displays 
pairwise 2D plots of the multivariate data. Figure 3E shows 5 
parameters and 21 scatterplots. The diagonal scatterplots are 
histograms that show the distribution of the individual parameters. 
We will revisit the histogram visualization in Section 4.4. The MOS 
visualization supports pairwise comparisons of all parameters.  

Multidimensional Scaling Scatterplot: The MDS scatterplot 
visualization (Figure 3C) projects a high-dimensional dataset into 
a 2D scatterplot, which approximates the similarities among the 
data records using the pairwise distances among the corresponding 
dots in the scatterplot. Our tool allows users to control the weight 
of individual parameters (highlighted in green in the lower left of 
Figure 4), contributing to the computing of the numerical vectors 
for scaling calculation. 

Figure 4 depicts a simplified example that snaps together three 
visualization tools. The MDS plot on the left shows the relative 
locations and density of the high southward velocity (red) values as 
compared to the high downward velocity (green) values.  

Profile Plot: The profile plot visualization (Figure 3H) is a 3D 
line or shading plot that depicts the changes of different scalar 
values of a brushed geospatial location (longitude and latitude 
coordinates) versus the elevation (atmospheric levels) versus the 
model time steps. We have multiple examples of using this 
visualization in Section 5.1.  

Flow Field and Globe: This visualization contains both a flow 
field particle visualization in 3D curvilinear format and a globe 
with map information and other geographic references (see Figure 
3G). Users can zoom, pan, and rotate the globe. They can also 
control the elevation, longitude, and latitude coordinates of the flow 
visualization area. We develop a customized flow field 
visualization library [13] for fast rendering of very large 3D flow 
data. Figure 5 depicts the locations of two circular flows (in yellow) 
as shown in the globe visualization and the 3D time-volume 

Figure 3: (Right) A landscape view of the system screenshot. 
(Above) An annotated sketch that shows the identities of the 
visualization windows in the screenshot on the left. A: 3D volume 
time series. B: System control panel. C: Multidimensional scaling 
scatterplot. D: Color blending chart. E: Matrix of scatterplots. F: 
Parallel coordinates. G: 3D Flow field and globe visualization. H: 
Profile plot.  

Figure 4: A snap-together example that demonstrates the interactions 
among the MDS plot and the two information visualization tools.  
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visualization. We can interactively tie the two features together 
because of the flow field to flow graph transformation step (Section 
4.2) that provides direct linkage between the two features.  

4.4 Drawbacks of Brushing and Linking 
When we have more data items than display pixels, overlapping in 
visualizations (especially ones employing information 
visualization techniques) is inevitable. When we create a 
visualization based on data value mapping, an unevenly distributed 
data layout is also unavoidable. Putting these two visualization 
realities together often creates unintended problems for interactive 
visualization of large-scale data.  

Because some pixels represent more data items than the others, 
the unevenly distributed visualization pattern can potentially cause 
unpredictable response time patterns in both brushing (asking 
questions) and linking (showing answers). This is particularly true 
in scientific data with a highly skewed data distribution pattern. 

One remedy to alleviate the problem is to provide visual cues that 
show the data distribution density in the visualization. In our 
system, we include 1) a histogram to complement a single variate 
visualization (see diagonal plot in Figure 3E) and 2) a contour map 
for a bivariate visualization, such as a 2D scatterplot. Figure 3C 
shows a contour map (in magenta) on top of an MDS scatterplot. 
The visual cue feature is a welcome addition to the climate 
scientists because there is often a high percentage of uninteresting 
data with very similar values within a large-scale model dataset. 

5 CLIMATE ANALYTICS EXPLORATION 
We show how domain scientists apply our visual analytics tool to 
explore a large-scale climate model data and identify different 
features associated with MJO. The goal is to demonstrate the 

practical applicability of the tool in large-scale data analytics and 
evaluate the user experience for future improvement.  

5.1 A Large-Scale Climate Model Exploration Session 
The exploration session involved two climate scientists and two 
visual analytics researchers using two 30” desktop display panels. 
The role of the visual analytics researchers in the session was to 
observe, record, and occasionally answer operation-related 
questions. The two domain scientists designed the underlying 
climate model and have a theoretical understanding of the science 
behind the underlying data. However, they had never seen a 
complete visualization of their data, especially when using a 
multifaceted interactive exploration tool.  

The session lasted for about two hours. The scientists spent the 
first few minutes exploring different visualization techniques and 
interaction options. During the visualization exploration, the 
domain scientists also used a whiteboard to plan their exploration 
strategies. We highlight three particular instances that show how 
the domain scientists used the tool to explore their model data. 

Support or Refute Arguments: Among the many 
characteristics of an MJO is the appearance of slowly evolving 
features with high convection flow fields and high moisture 
content. The domain scientists first used the parallel-coordinates 
visualization to brush the high upward velocity and high moisture 
variates and then searched for consistent spatial and temporal 
patterns in the 3D volume time series visualization. An interesting 
pattern instantly appeared between time steps 103 and 111 as 
shown in Figure 6a. As we can see, the trail starts in the second 
panel, moves slowly towards the center of the 3D volume, and 
finally dissolves in the last panel of Figure 6a.  

However, the visual evidence was soon refuted by the scientists. 
By interactively manipulating the volume visualization, they 
realized that the location of the trail pattern was too close to the 
boundary in the 3D volume, as shown in Figure 6b. An MJO feature 
should not be found in those geographic locations.  

Multifaceted Exploration: Another exploration strategy of the 
MJO problem is to examine the high moisture content in different 
atmospheric levels. In Figure 7a, mid-range elevation and high ice 
content were selected. This time, instead of comparing the temporal 
and spatial patterns from the 3D volume time series visualization, 
the scientists inspected the individual brushed data point by 
visualizing the 3D volume from different perspectives and 
confirmed that the location of the brushed data point was far away 
from the boundaries. The scientists also locked in longitude and 
latitude coordinates for further multifaceted exploration using 
additional visualization techniques.  

Rather than detecting temporal features directly from the 3D 
volume time series as in the previous example, the scientists used 

Figure 5: The two yellow-highlighted circular flows suggest that 
there may be a vertical convection at different atmospheric levels of 
the location, which can be a clue for identifying a MJO.  

 

 Figure 6: a) An evolving pattern that starts in the second panel, moves slowly from northwest to central in the next six panels, and finally 
dissolves in the last panel. The patterns are highlighted in red. b) After rotating the 3D rectangular volume, the scientists realize the pattern 
was detected along volume boundaries. An MJO feature should not be found in those areas, which are highlighted in yellow.  
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the profile visualization to examine the ice content of the same 
longitude and latitude coordinates of the model throughout the 
entire 120 time steps. Their goal was to evaluate the trend of 
changes during the entire model period. Figures 7b and 7c show 
two different views of the corresponding profile visualization. In 
both Figures 7b and 7c, the scientists noticed two peaks separated 
by a valley in the profile visualization, which suggested two 
potential episodes of MJO during the model period.  

Validation and Interpretation: To validate the finding of two 
potential episodes of MJO, the domain scientists needed to consider 
additional scalar parameters in the model. The climate physics of 
the MJO suggests that a consistent change of ice content within an 
area would likely be followed by a similar change of vapor in the 
area. 

Figures 8a and 8b show the profile visualizations of vapor 
(vertical V-axis) versus time (horizontal T-axis) of the same 
brushed location using line and shading plots. Unfortunately, both 
figures show consistent vapor contents (i.e., no major peaks or 
valleys) throughout the entire model period.  

By further manipulating the 3D profile plots, the domain 
scientists discover that heavy vapor is found at the lower 
atmospheric levels. As shown in Figure 8c, the low-level vapor 
(highlighted by a yellow arrow) blocks the more interesting vapor 
pattern (highlighted by a cyan arrow) found in higher atmospheric 
levels (vertical E-axis). That is the reason for the flat, uninteresting 
patterns found in Figures 8a and 8b. 

Our visual analytics system has a customized feature that 
removes the low-level climatology of the data. This is done by 
subtracting the time-varying vapor values with the average vapor 
values at the same atmospheric level, i.e., 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 (𝑡𝑡) − 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉��������. The 
results are plotted in Figures 8d and 8e. As shown in the figures, 
the two potential MJO features (annotated by the yellow arcs) 
instantly appear in both figures. Because both ice (Figure 7) and 
vapor (Figure 8) exhibit consistent data-varying patterns, together 
they provide keen evidence that there are indeed two episodes of 
MJOs in the time-varying climate model dataset.  

5.2 Applicability Evaluation by Domain Scientists 
Section 5.1 summarized an exploration session that involved only 
a subset of visualization techniques supported by our system. The 
domain scientists did in fact sample all the other visualization 
techniques during the session. After the exploration session, both 
visual analytics researchers and domain scientists evaluated the 
applicability of the tool in large-scale information visualization. 
The comments, summarized below, should only be treated as a 
reference for a similar information visualization study.  
• The domain scientists found the parallel coordinates technique 

“extremely” powerful and useful in both brushing 
(aggregating query) and linking (showing corresponding 
answers) multivariate data. 

• Even though we didn’t include the MOS technique in the 
discussion in Section 5.1, the domain scientists indeed used it 

Figure 7: a) Mid-range elevation and high ice content were selected 
as shown by the yellow bars. Two profile plots show the ice values 
(vertical V-axis) versus time (horizontal T-axis) of a brushed area in 
both line plot (b) and shading plot (c). The yellow arcs highlight the 
peaks and valleys of the two potential MJO episodes.  

a 

b c 

Figure 8: a) A profile plot that shows the vapor values (vertical V-
axis) versus time (horizontal T-axis) of the same brushed 
geographic location as Figure 4 using line plot. b) The same profile 
plot using shading color. c) High vapor values (V axis) at low 
atmospheric level (E-axis) highlighted in yellow hide the more 
interesting patterns at higher atmospheric level, as highlighted by 
the cyan arrow. d) Profile plot after the low-level climatology is 
removed. The two peaks appear again, as highlighted by the two 
yellow arcs. e) The same profile plot in shading color. f) The color 
map of visualization. Blue is negative and red is positive.  

a b 

e 

c d
 

f 

90



frequently to complement the other techniques for 
multifaceted exploration. For example, it is not easy to trace 
the red (high ice), green (high cloud), and blue (high vapor) 
lines in Figure 9a, especially in around the two flow velocity 
axes highlighted in yellow. However, the corresponding 
matrix of scatterplots visualization in Figure 8b clearly depicts 
the relationships among the two velocity parameters and the 
brushed red, green, and blue data for visual analysis (also 
highlighted in yellow). 

• As described in Section 5.1, the scientists manipulated the 3D 
volume extensively using the mouse to visualize the brushed 
data layout from different perspectives. The same 3D volume 
time series capability is not available in the climate 
visualization tools that they use daily, as shown in Section 2.1.  

• We made an interesting observation that the domain scientists 
did not brush more than 10% of the data throughout the entire 
exploration session. It was later explained to us that the 
scientists understood the model theory (both overview and 
trends) well. But they don’t have the same degree of 
understanding of local fine details.  

• Both the profile plot and the globe with flow field 
visualization were deemed useful in the exploration session. 
What separates them, performance-wise, is the brushing 
capability in the profile plot and the lack of it in the flow field 
visualization. Without the brushing capability, the flow field 
visualization became a less appealing multifaceted 
information visualization for data exploration. However, we 
are in the process to develop a 3D virtual globe with full 3D 
spatial brushing capability to support climate model analytics.  

• The visual analtyics researchers were surprised that the MDS-
scatterplot technique was not used as often by the domain 
scientists as we expected in this particular case study. The 
scientists explained that they needed to study the behaviors 
and implications of “individual” parameters in the MJO 
exploration. The dimension reduction process of MDS hides 
the sensitive inter-parameter correlations and hinders the 
exploration goal of this particular analysis. The domain 
scientists were informed that there are datasets that contain 
tens of hundreds of parameters. Dimension reduction may be 
the only viable option for that kind of data. The domain 
scientists instantly came up with possible applications that can 
potentially utilize the visualization techniques in our next 
climate simulation. In the end, we agreed that we should keep 
the MDS-scatterplot technique in the system for future climate 
data analysis. 

6 COMPUTATION PERFORMANCE STUDIES 
We showed the analytical applicability of the visual analytics tool 
in Section 5. Here we demonstrate the computation performance of 
the tool running on a commodity desktop computer. Details of the 
dataset and computer hardware used in this study are described in 
Sections 3.1 and 3.3.  

We mentioned earlier that there are 120 time steps in the dataset. 
To generate different data sizes for the performance benchmark 
study, we progressively reduce the data size in the study by 
increasing the step sizes of the data. So when time step is equal to 
1, the entire dataset is used in the study. When the time step is equal 
to 2, the data size is reduced by half. In other words, the larger the 
time step number, the smaller the size of the data.  

We are particularly interested in the system response time for the 
interactive analytical operations, i.e., brushing and the 
corresponding linking processes. In this study, we investigate the 
worst-case scenario when the users bring up all the visualization 
panels and use the full-resolution dataset, as described in Section 
3.1. In other words, when users brush the entire dataset, the system 
will filter and navigate all the scalar values. Table 2 shows the 
system response times of the four information visualization 
techniques when brushing different portion percentages of the 
dataset (from 100% down to 5%). Because the system response 
times of the globe and 3D flow field data visualization and the 
profile visualization take less than 0.1 seconds to complete, we do 
not include these time results in the table. 

Table 1: System response times (in wall clock seconds) of applying 
parallel coordinates (PC), multidimensional scaling scatterplot 
(MDSS), 3D volume time series (3DTS), and matrix of scatterplots 
(MOS) when brushing different portions of the full-resolution data.  

Brushing % PC MDSS 3DTS MOS 
100% 0+ 0.16 5.523 0.31 
75% 0+ 0.15 3.635 0.31 
50% 0+ 0.16 3.198 0.31 
25% 0+ 0.15 1.731 0.32 
10% 0+ 0.16 1.264 0.31 
5% 0+ 0.16 0.608 0.31 

 
The time differences between brushing 100% (solely for 

benchmarking purposes) to 5% of the data are between 1 to 5 
seconds. Our domain scientists generally agree that the response 
time performance meets their analytical needs to interactively 
visualize the data. We did observe in Section 5.2 that the domain 
scientists do not normally brush more than 10% of the data. 

7 OBSERVATIONS, LESSONS LEARNED, AND CHALLENGE 
A key objective of this application paper is to share the lessons 
learned with readers. We have already reported our applicability 
and computational performance experiences in Sections 5 and 6. 
Here we present observations and lessons learned in the 
development of a large-scale visual analytics tool for compatible 
data size using a commodity desktop computer. 

Fresh Model Data Exploration Experience: Except for 3D 
volume visualization and the globe/flow field visualization, the 
information visualization techniques supported by our tool are not 
available in any of the prevailing tools described in Section 2.1. 
Naturally, the tool is a welcome addition to our domain scientists’ 
tool chest.  

Additionally, this is our domain scientists’ first experience 
visually analyzing and exploring such a large amount of model data 
using high-resolution visualization graphics in interactive mode on 
a desktop computer.  

Low System Learning Curve: The few information 
visualization techniques included in the system design have shown 
to be intuitive to learn and easy to use. The tool developers didn’t 

a 
b 

Figure 9: a) High ice, high cloud, and high vapor values are 
brushed in red, green, and blue respectively. It is not easy to 
explore the two flow velocity parameters near the yellow 
highlighted area. b) The same brushed data (also marked in 
yellow) are ready for visualization. 

91



provide any documentation or help files to the domain users. And 
yet after only a few minutes of demonstrations, the domain 
scientists were able to start using the tool and visually search for 
features and clues in their model data.  

Information Visualization: The computation and applicability 
study results in Sections 5 and 6 suggest that many conventional 
information visualization techniques, like some of those discussed 
in the paper, can theoretically go beyond the 3 billion number mark 
on a similar data exploration problem. This is based partly on the 
fact that our desktop computer for development and testing has only 
48GB of memory installed. The same machine can install up to 
192GB (i.e., 3 times more) of memory.  

However, our case study does not address large-scale visual 
analytics challenges posed by, for example, hierarchical data, like 
a node-link graph.  

The Top Challenges Ahead: Beyond computation and 
visualization, there are other challenges that lie ahead in large-scale 
visual analytics. During the course of the investigation, we have 
compiled a list of general [17] and interaction [18] challenges in 
extreme-scale visualization and analytics. Top future challenges 
that are associated with desktop applications include 1) 
representation of evidence, 2) uncertainty quantification, 3) data 
fusion, 4) data summarization, 5) human cognition, and 6) several 
engineering development issues. Readers are referred to the above 
two publications for further details.  

8 CONCLUSION AND FUTURE WORK 
For the desktop-based, large-scale visual analytics research and 
development effort, we will continue to 1) enhance and fine-tune 
the exploration capabilities and 2) analyze additional climate 
phenomena beyond MJO. Visualization and analytical issues 
identified in Sections 5 through 7 will be thoroughly assessed and 
addressed. These challenges include supporting interactive data 
brushing for 3D flow-field visualization, more powerful temporal 
and spatial analytics techniques, and interactive visualization using 
a touchable power wall with 12 back projectors. Figure 11 shows 
an early design prototype using a smaller, non-touchable wall 
display with 2 front projectors.  

For the overall exabyte data visualization and analytics research 
effort, we are modeling a much larger and higher-resolution 
regional climate dataset that covers a wider area surrounding the 
entire globe using the same HPC described in Section 3.1. The data 
size and computation results reported in this paper will serve as a 
benchmark to determine the amount of data exported by the HPC 
to the desktop computer for interactive analysis.  
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