In-situ Processing and Interactive Visualization for Large-Scaled
Numerical Simulations

Fang Chen * Markus Flatken *

Ingrid Hotz * Andreas Gerndt *

Simulation and Software Technology, German Aerospace Center (DLR)

ABSTRACT

With the increasing power of the HPC hardware systems, numer-
ical simulations are heading towards exa-scale computing. Early
inspection and analysis of on-going large simulations enables do-
main experts to obtain first insight into their running simulation
process and intermediate results. Compared to conventional post-
processing, such in-situ processing has the advantage of keeping
data in memory, avoiding to store the large amount of raw data
to disk, providing on-the-fly analysis, and preventing early failures
in the simulation process. In this poster we present a distributed
and scalable software infrastructure, which provides distributed in-
situ data processing, feature extraction and interactive exploration
at user’s front-end. We have integrated and extended our system to
multiple simulation applications, ranging from Lattice-Boltzmann
blood flow simulation to grid based simulation for propulsion sys-
tems. A user-interactive front-end is integrated to our system, al-
lowing to directly interact with the visualization of running simula-
tions, gain insight, and make decisions.

1 INTRODUCTION

Given the complexity and scale of today’s simulations, it is no
longer a viable solution to store all simulation data to disk. Lim-
ited system /O capacity hinders the simulation from outputting in-
termediate results. Therefore, it has become a common practice
for large simulations to throw away results from intermediate time
steps. To prevent simulation failure at an early stage, in-situ data
analysis and visualization is becoming a necessity to enable domain
experts to monitor whether a simulation is running smoothly and to
obtain first insight into the resulting data.

The challenges of performing in-situ processing differ from
those of traditional post-processing. First, a deep integration of
the analysis and visualization algorithms into the simulation is re-
quired, which allows a conflict-free sharing of data. Second, the
additionally memory requirements should be kept minimal. Third,
the communication costs between cluster nodes should be kept
low, which excludes global algorithms. E.g., algorithms search-
ing through the whole data, distributed over a huge of number of
parallel machines, are very expensive. Last but not least, network
bandwidth becomes a bottleneck when the user is interacting with
the data at the front-end application. Latency issues arise whenever
huge amount of information exchanges happens between the user
and the in-situ process.

A first insight into the ongoing simulation normally does not re-
quire complicated visualization algorithms. However, domain ex-
perts should have the possibility to use their domain knowledge to
steer the visualization to focus on regions that they consider as im-

*e-mail:fang.chen@dlr.de
Te-mail:markus.flatken @dlr.de
*e-mail:ingrid.hotz@dIr.de
$e-mail:andreas.gerndt@dIr.de

IEEE Symposium on Large Data Analysis and Visualization 2014
October 9-10, Paris, France
978-1-4799-5215-1/14/$31.00 ©2014 IEEE

portant and to identify critical information which might lead to a
modification of the next simulation design. Therefore, we consider
user interaction as a key component of our system.

The presented system infrastructure extends previous work
called Viracocha [1], a distributed post-processing system. The re-
sult is a more flexible and powerful system, which permits in-situ
processing with the distributed simulation, supporting on-demand
data analysis, and interactive exploration with current instance of
simulation data.

As a pilot case, the proposed system has been integrated with
HemelLB, a Lattice Boltzmann based software that simulates the
flow of blood in intracranial aneurysms. Given the current prob-
lem sizes, our approaches yield promising results with respect to
interactivity and scalability.

Network bandwidth becomes a bottleneck in two places:
the bandwidth between simulation cluster and rendering ma-
chine/cluster, and the bandwidth between the rendering cluster to
front-end display. The first one limits the size and complexity of
features to be rendered, while the second constrains the image qual-
ity to be displayed. To further reduce latency, we have integrated
multiple image compressing techniques.

2 SYSTEM ARCHITECTURE

Figure 1 illustrates the layout of our proposed software infrastruc-
ture. The body contains three major parts. First, in-situ data pro-
cessing and parallel feature extraction take place on the large-scale
cluster system together with the ongoing simulation. Next, depend-
ing on the size of resulting extracted features as well as the com-
plexity of rendering algorithms, rendering is performed either on a

:/SimUIatiOﬁ\h -
g J Dataset t 5
2c Storage 3
8.2 | 3
- ® 3 S
25 =
58) 2
& Extracted Data-Parallelism
oS Hec- .
urees > TaskB) TaskEp TaskH> | (@
Ma""'"g ST ey Ty Tty | |
Task-Parallelism o
Geom I
o | Dpata | o
3£ — <>
8 <>y GPU
T s Rendermg EIEE'E’ Cluster 2
[
o &’ ‘ Parallel Rendering =
Image o
Stream ‘ S
k]
: @ -
< Workstations
§ Dlsplay & Displays
[
< >

Figure 1: Infrastructure: The simulation and parallel feature extrac-
tion is executed on large cluster systems. Depending on the amount
of extracted features rendering takes place on a smaller GPU-cluster
or directly on the user’s desktop.

106

small scaled GPU-cluster or directly on a single front-end machine.
Thirdly, resulting images are displayed either on a single desktop
or in a virtual environment accompanied with different type of user
interaction techniques.

For such a distributed software infrastructure, communication
and data transfer are essential factors to enable interactivity and
scalability. Data must be exchanged with minimal latency be-
tween different software layers, applications, and resources. Tak-
ing HemeLB as an example (Figure 2), we illustrate the data and
communication flow within our system.

HemelB Slave
HemelB
Data Reader

«————> TCP/IP Ethernet

«——————» Cluster Interconnect ViracochaSlave

«————————» Main-Memory > DataManager [/ [attices

HemelB - Simulation Maste}

HemelB Slave

HemelB
Data Reader
t» DataManager %/ |attices

ViracochaMaster

Scheduler le

Rendering i
Vista/VistaFlowLib
ParaView

HemelB Slave
HemelB
Data Reader

ViracochaSlave

»| DataManager ‘t—b Lattices

Figure 2: Communication and data flow: Every Viracocha process
is embedded into HemelLB as a concurrent thread. The Viracocha
scheduler is responsible to receive user requests from a front-end
over TCP/IP and initiate the algorithm execution on the Viracocha
slave instances. The data manager within the slave’s have direct
access to simulation data over main-memory and are able to com-
municate over the cluster interconnect with similar ones to exchange
data when required.

A user sends filtering requests to the Viracocha application em-
bedded into the HemeLB solver. The scheduler directly distributes
this request to the slave processes. Each executed algorithm within
a Viracocha slave is able to access the HemeLB simulation data
over a data manager component. Furthermore, it is also possible to
access data from other processes. As soon as the requested data is
extracted, the results are streamed to the rendering application for
immediate presentation.

2.1 Coupling the simulation with in-situ processing in a
distributed system

To access the simulation data in-situ and perform on-demand filter-
ing, we need to access the main-memory of each computing node.
Since the numerical simulation is running as a parallel application,
each process holding data has to pass the current simulation data to
the cohabitant Viracocha process. A solver specific data extractor
utilized by the Viracocha data manager is integrated into HemeLLB
software (Figure 2).

To guarantee high bandwidths and low latencies we have cho-
sen to couple both parallel applications in the process-space (in-
situ). Therefore, Viracocha is executed concurrently by thread-
ing within each solver process. Viracocha is based on the mas-
ter/slave paradigm where two major types of instances exist. The
Viracocha slave is in charge of algorithm execution including data
access while the Viracocha master is responsible for receiving filter-
ing requests and scheduling algorithm execution of the Viracocha
slaves. Once the master receives a filtering request, the simulation
is shortly disrupted after the actual iteration to access data snapshots
and to apply desired data conversion. Then the simulation proceeds
while the snapshot is used by the filtering operation to extract user
defined features. We have chosen a snapshot approach where the
simulation is only interrupt for a negligible time and the simula-
tion process is not interfered further by Viracocha. Altogether, this
concurrent execution and easily extendable data exchange allow for
quick integration into other simulation codes.

2.2 Rendering of filtered data

Interactive visualization of large-scale simulation results not only
requires parallel feature extraction, it also requires scalable render-
ing solutions. The major challenges for the rendering application
are the preparation of the received data at high throughput, and the
massive amount of main and GPU memory needed for the render-
ing. If the extracted features are huge, a single desktop machine be-
comes quickly overwhelmed. In this case, we place a scalable par-
allel rendering architecture between the feature extraction and the
user’s front-end. On top of this parallel rendering technique, our de-
veloped rendering application makes heavy use of multi-threading
per process to prepare the data rendering. Therefore, it exploits
today’s and future multi-core CPU architectures.

2.3 Allowing user interaction

We developed an front-end application based on Vista and Vista
FlowLib [2]. This application allows the user to interact with the
in-situ visualization in a virtual environment (as shown in Figure 3).
Using a fly-stick in front of a powerwall display, the user is able
to perform tasks including sending request to couple or decouple
data filtering, choosing data mapping and rendering algorithms, and
navigating through the resulting visualization. As alternatives, we
also support single desktop as front-end using mouse and keyboard
as input devices which send out interaction commands.

Figure 3: A scientist is interactively exploring the blood flow of an
aneurism during an on-going HemeLB simulation.

3 FUTURE WORK

Work in progress includes extending Viracocha’s caching mecha-
nism to accommodate data from multiple time steps. This will en-
able in-depth exploration of data’s temporal characteristics. Further
effort will be put into the development of effective global visualiza-
tion algorithms, where initial data decomposition plays an impor-
tant role in minimizing communication overhead.

ACKNOWLEDGEMENTS

The authors want to thank University College London for the col-
laboration on HemeLB. Our research has been supported by the
CRESTA project funded within the European Community’s Sev-
enth Framework Programme (ICT-2011.9.13) under Grant Agree-
ment no. 287703.

REFERENCES

[1] A. Gerndt, B. Hentschel, M. Wolter, T. Kuhlen, and C. Bischof. Vira-
cocha: An efficient parallelization framework for large-scale cfd post-
processing in virtual environments. In Supercomputing, 2004. Proceed-
ings of the ACM/IEEE SC2004 Conference, pages 50-50, Nov 2004.

[2] M. Schirski, A. Gerndt, T. van Reimersdahl, T. Kuhlen, P. Adome:it,
0. Lang, S. Pischinger, and C. Bischof. Vista flowlib - framework for
interactive visualization and exploration of unsteady flows in virtual
environments. In Proceedings of the Workshop on Virtual Environments
2003, EGVE ’03, pages 77-85, New York, NY, USA, 2003. ACM.

