
Remote Parallel Rendering for High-Resolution Tiled Display Walls

Daniel Nachbaur∗ Raphael Dumusc* Ahmet Bilgili* Juan Hernando† Stefan Eilemann*

*Blue Brain Project, EPFL; †CeSViMa, UPM

Abstract—We present a complete, robust and simple to use hardware and software stack delivering remote parallel rendering of
complex geometrical and volumetric models to high resolution tiled display walls in a production environment. We describe the setup
and configuration, present preliminary benchmarks showing interactive framerates, and describe our contributions for a seamless
integration of all the software components.

Index Terms—tiled displays, interactive remote rendering, parallel rendering

1 INTRODUCTION

Simulations performed on today’s high performance computers pro-
duce massive amounts of data, which are too expensive to move to
another system. On the other hand, tiled display walls have proven
to help understanding complex data due to their size, resolution and
collaborative usage. Often the two systems are not located in the same
facility due to power constraints or other factors.

In this systems poster we present a full production-ready software
stack which enables the rendering of large amounts of data on a par-
allel visualization cluster, streaming of the results over a WAN link
to a remote location, where it is displayed at interactive framerates on
a tiled display wall alongside other local or remote content. The full
software stack, with the exception of one domain-specific application,
is available as open source to be reused in similar settings. Figure 1
shows our setup, motivated by the needs of the Blue Brain Project.

Fig. 1. Multitouch interaction with a remote parallel rendering of a neo-
cortical column simulation (middle) next to the web portal browser (right)
used to launch the rendering and a presentation (left)

A remote BlueGene supercomputer with a co-hosted visualization
cluster, described in Section 2, is the main producer of simulation data
in the project. Interactive 3D visualization applications built on an
open source software stack described in Section 3 are used to analyze
the results using geometric and volumetric rendering, as described in
Section 3.4 and Section 3.5. The results of these visualizations are
shown on the local workstation using VirtualGL [1] and on a tiled
display wall running DisplayCluster.

∗Firstname.Lastname@epfl.ch
†jhernando@fi.upm.es

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of
publication xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

2 HARDWARE

Figure 2 shows a diagram of the hardware setup. At the Lugano fa-
cility, a four-rack BlueGene/Q, a parallel GPFS filesystem and a 40-
node visualization cluster are hosted, all connected using an Infini-
Band switch. The visualization cluster nodes have two NVidia Tesla
K20 cards, two Intel Xeon E5-2670 v2 processors (8 cores @ 2.6GHz)
and 128 GB of memory. They are also connected to a ten gigabit eth-
ernet switch, which serves the WAN link to Lausanne, located about
250 km away.

FDR
InfiniBand

Four-Rack
BlueGene/Q

Visualization Node
Tesla K20

Visualization Node
Tesla K20 Tesla K20

40 total
Tesla K20

Visualization
Node

GTX 580
GTX 580
GTX 580

Visualization
Node

GTX 580
GTX 580
GTX 580

10 GBit/s
WAN LinkLausanne

10 GE

10 GE

QDR IB

GPFS
Lugano

Fig. 2. Hardware Setup

In Lausanne, the link is routed to another ten gigabit ethernet
switch connected to the local visualization cluster. For display, a 24
megapixel, 4×3 tiled display wall is used. Two display nodes use three
NVidia GTX580 each to drive two Full-HD displays per GPU. Each
node has two Xeon X5690 (6 cores @ 3.47GHz) and 24 GB memory.
The nodes are connected to the ten gigabit ethernet switch as well as a
local QDR InfiniBand network.

3 SOFTWARE

The hardware resources are managed by the Slurm job scheduling sys-
tem. The Lugano cluster receives its data from the GPFS and performs
parallel rendering using mesh and direct volume rendering. The ren-
dered images are then sent over the WAN link to the Lausanne cluster,
where they are displayed on the tiled display wall.

3.1 DisplayCluster
DisplayCluster [5] is an interactive visualization environment for
cluster-driven tiled displays. It provides a dynamic, desktop-like win-
dowing system with built-in media viewing capability that supports
ultra high-resolution imagery and video content and streaming that al-
lows arbitrary applications from remote sources to be shown.

3.2 Streaming Library
We extended the existing DisplayCluster implementation by reimple-
menting the streaming using a simple library [2], used by applications

117

IEEE Symposium on Large Data Analysis and Visualization 2014
October 9–10, Paris, France
978-1-4799-5215-1/14/$31.00 ©2014 IEEE

to display their content in a DisplayCluster window. The applica-
tion usually provides an image buffer, which is compressed and sent
asynchronously and in parallel by the stream library. Multiple stream
sources from multiple processes can provide content to a single win-
dow on the wall, enabling it for cluster-driven parallel rendering. The
stream library also implements an event model, where an application
can register itself to receive keyboard, mouse and window manage-
ment events from the display wall.

3.3 Equalizer
Equalizer is a framework to develop and deploy distributed and non-
distributed parallel rendering applications. The programming interface
is based on a set of C++ classes, modeled closely to the resource hier-
archy of a graphics rendering system, described in more detail in [3].
An Equalizer application is configured automatically using local and
remote resource discovery, or manually using simple ASCII configu-
ration files.

We integrated the stream library into Equalizer to send the frame-
buffer of each destination channel to DisplayCluster, using a direct
FBO download (if possible) or a texture download. The compres-
sion and sending uses the asyncSend function, pipelining compres-
sion and streaming with rendering. Received events from Display-
Cluster are forwarded to Equalizer’s event system. This integration al-
lows all Equalizer applications to benefit from streaming without any
code changes. It is configured simply by specifying the DisplayClus-
ter hostname for all views to be streamed.

3.4 RTNeuron
RTNeuron [4] is a neuroscientific visualization application designed
for interactive visualization of detailed cortical circuit simulations. It
features several graphics techniques and algorithms tailored to the spe-
cific geometrical characteristics of neurons to allow the efficient ren-
dering of neuronal circuits where simulation data is mapped onto the
membrane meshes. Some of these features have to do with levels of
detail, view frustum culling and correct alpha-blending. To enable the
visualization of large circuits at interactive speeds, RTNeuron makes
use of Equalizer to implement sort-first parallel rendering with load
balancing and sort-last rendering with a static decomposition. We use
a static sort-first decomposition as described in Section 4.

3.5 Livre
Livre (Large-scale Interactive Volume Rendering Engine) is an out-
of-core direct volume rendering engine. It uses an octree data struc-
ture to provide an error based level of detail (LOD) selection, aiming
for a constant rendering quality. An asynchronous rendering pipeline
separates the rendering algorithm into asynchronous data, upload and
render threads. Equalizer is used for sort-first rendering, as shown in
Figure 2.

3.6 Web Portal Integration
Within the Human Brain Project, scientists are able to access simu-
lation data from a web-based unified portal. Alongside with several
analysis tasks that can be performed on the data, a task to stream the
rendering of a precomputed simulation using RTNeuron was imple-
mented. It uses Slurm to allocate rendering resources and launches
an RTNeuron instance with an Equalizer configuration to stream the
rendering from each GPU to the display wall. User interaction is pos-
sible by interacting with the multi-touch system to navigate through
the scene. Figure 1 shows the setup of the RTNeuron stream launched
from the web portal.

4 RESULTS

Figure 3 shows the performance of streaming a light-weight rendering
from the Lugano cluster to our 24 Megapixel wall. We tested three
resolutions (1920×1080, 3840×2160 and 7680×3240), two camera
positions (full model and close up) and three different tile sizes (2562,
5122 and 10242). Due to a misconfiguration, the WAN link delivered
only 1 GBit/s throughput during the benchmark test.

Table 1

RTNeuron,
compression
quality

2Kfar close 4K far close 8K far close

75%

95%

100%

36 27 19 18 18 17

36 18 20 20 20 19

32 12 20 15 20 13

0
6

12
18
24
30
36

2Kfar close 4K far close 8K far close

JPEG Compression Quality, 512² Tile Size

75%
95%
100%

0
6

12
18
24
30
36

2K far close 4K far close 8K far close

Tile Size, Quality 100%

256²
512²
1024²

FPS

FPS

Fig. 3. Performance Benchmarks

The results show that interactive framerates are available even at
the full native resolution, that a 5122 tile size is the best option found,
and that 95% compression delivers the best performance in most cases.
The far camera has more uniform background pixels and yield better
compression ratios. Based on the experiments we settled on a 5122

tile size and 100% compression quality to avoid artifacts.

5 CONCLUSION AND FUTURE WORK

In this poster, we present a full fledged software stack to perform high-
resolution remote parallel rendering in a production environment, and
describe how to set up and configure the components. This work can
be easily reused in other institutions due to its open source implemen-
tation.

We intend to improve the streaming performance by employing bet-
ter compression algorithms, in particular hardware-based encoding on
the GPUs and improving the pixel readback performance.

ACKNOWLEDGMENTS

This work was supported in part by the Blue Brain Project, the Swiss
National Science Foundation under Grant 200020-129525, by the
Spanish Ministry of Economy and Competitiveness under the Cajal
Blue Brain Project, the European Union Seventh Framework Pro-
gramme (FP7/2007-2013) under grant agreement no. 604102 (Hu-
man Brain Project) and the King Abdullah University of Science and
Technology (KAUST) through the KAUST-EPFL alliance for Neuro-
inspired High Performance Computing. We would also like to thank
github for providing an excellent infrastructure hosting our projects at
http://github.com/Bluebrain and http://github.com/Eyescale.

REFERENCES

[1] D. Commander. The VirtualGL Project - 3D without Boundaries.
http://virtualgl.org/, 2011.

[2] R. Dumusc and D. Nachbaur. DisplayCluster Stream library.
http://bluebrain.github.io/DisplayCluster-0.3, 2014.

[3] S. Eilemann, M. Makhinya, and R. Pajarola. Equalizer: A scalable parallel
rendering framework. IEEE Transactions on Visualization and Computer
Graphics, May/June 2009.

[4] J. B. Hernando, J. Biddiscombe, B. Bohara, S. Eilemann, and
F. Schürmann. Practical parallel rendering of detailed neuron simulations.
In Proceedings of the 13th Eurographics Symposium on Parallel Graphics
and Visualization, EGPGV ’13.

[5] G. P. Johnson, G. D. Abram, B. Westing, P. Navr’til, and K. Gaither. Dis-
playcluster: An interactive visualization environment for tiled displays.
2013 IEEE International Conference on Cluster Computing (CLUSTER),
0:239–247, 2012.

118

