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Abstract—Moment invariants are popular descriptors for real valued functions. Their independence from certain transformations

makes them a powerful tool for the recognition of patterns and shapes. It has recently been demonstrated that the basic ideas

can also be transferred to vector valued functions. Vector moment invariants can be used to define and search for interesting flow

structures. A generalization to three-dimensional vector valued functions so far has not been investigated at all. In this paper, we

approach that problem. We introduce a definition of moments for three-dimensional vector fields and present how flow field invariants

can be constructed from the normalization of the first order vector moment tensor.

1 Introduction

The search for patterns in scalar data has a long tradition in image
and shape analysis. A popular way to describe patterns are moments,
which are invariant with respect to certain transformations or defor-
mations of the patterns. They are robust, flexible, and easy to use.
Moments can be interpreted as the projection of the field to a basis.
Many different categories of moment invariants have been developed
and analyzed [4].

The definition of features as non-local patterns is also of great in-
terest in the area of flow analysis. For 2D flows it has already been
demonstrated that moment invariants have a great potential as pattern
descriptor. Thereby, two different approaches to achieve rotation in-
variance have been proposed. At first, there is the possibility to ex-
plicitly define a set of algebraic invariants [5] or secondly to apply the
method of normalization [3], i. e. to describe the pattern with respect
to a reference position [1]. In contrast to the first approach, the concept
of normalization also works for higher dimensions. A generalization
to three dimensions is proposed in this work.

Pattern recognition for 3D flows exhibits many new challenges
compared to the two-dimensional case. This concerns the selection
and the visualization of patterns but first of all the mathematical frame-
work to provide invariant descriptors, which will be discussed in this
paper. Our new definition of 3D vector moment invariants makes use
of the notion of moment tensors, similar as they have been used for
scalar functions in [2] and [6]. The basic idea is to arrange the mo-
ments of a given order such that they form a tensor. The characteristic
directions of these tensors are then used as a reference frame to com-
pare the moments to each other. In contrast to the scalar case, the
resulting tensor for vector moments is one rank higher and not sym-
metric. This requires a more general approach to define a standard
orientation.

Our major contribution can be summarized as:

• Provision of the theoretic framework for the definition of mo-
ments for 3D vector fields.

• Derivation of a set of flow field descriptors that are invariant with
respect to rotation, background flow and velocity.

• Experiments using these descriptors for translation, rotation, and
scaling invariant pattern recognition of flow fields.

2 Basics - Normalization for 3D Scalar Moments

Moments are coefficients of a function with respect to a function space
basis. Usually the monomial basis xpyqzr : W !R is used. Ordered as
an array, they form a tensor. It is a contravariant tensor of rank equal
to the order of the moments.

Definition 1. For a scalar function f : W ! R, the moment tensor

Mi1...in of order n 2 N takes the shape

Mi1...in =
Z

W
xi1 ...xin f (x)d3x. (1)

Thereby, xi j represents the i jth-component of x, i j 2 {1,2,3}.

Normalization is the process of putting a function into a predefined
position, compare Figure 1.
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Fig. 1. Demonstration of TRS normalization for the example of the 3D

characteristic function of a prism.

Normalization with respect to translation can be done by setting
the first order moment tensor to zero, M1 = M2 = M3 = 0. This is
equivalent to putting the center of mass into the origin of coordinates.
Normalization with respect to scaling can be achieved by demanding
the moment of grade zero to be one, M0 = 1. This is equivalent to the
claim for unit mass. The Jordan normal form of the symmetric second
order moment tensor can be used to define a standard orientation.

3 Vector Field Moments

In the following, we will demonstrate how moment invariants for 3D
flow fields can be constructed from normalization of the first order
vector moment tensor.

Definition 2. For n 2 N and a three-dimensional vector field v :
R3 !R3 with compact support, the n-th order vector moment tensor

Mi0i1...in is defined as

Mi0i1...in =
Z

R3
xi1 ...xin vi0(x)d3x. (2)

Theorem 1. The vector moment tensor of order n is a contravariant
tensor of rank n+1 and weight 1.

For a general vector field, translation, rotation, and scaling can be
applied to its argument and its value. That means we generally deal
with six important transformations. Invariance with respect to inner
translation and scaling need to be solved by searching at ‘all’ possi-
ble places and for ‘all’ possible scales in the vector field. The outer
translation can be interpreted as a distortion of the pattern by some



background flow or a moving frame of reference. The outer scale rep-
resents the velocity of the flow. To preserve the structure of a flow
field, rotations have to be applied to both the argument and the value
accordingly. In summary, the transformations of a flow field v(x) with
respect to which we want to normalize take the shape

v0(x) =sRv(R�1x)+ t, (3)

with the scaling factor s 2R+, translational difference t 2R3, rotation
R 2 SO(3). A standard position for the outer translation can be zero
for the zeroth order moment tensor M1 = M2 = M3 = 0. This erases
the background flow. The velocity can be normalized by demanding
a non vanishing moment to be one. Finding a standard position with
respect to rotation is the hardest part. Analogously to the scalar case,
we use the tensor of rank two. For vector fields, this is the first order
vector moment tensor

S =

0

@
M11 M12 M13
M21 M22 M23
M31 M32 M33

1

A . (4)

From Theorem 1 follows that it behaves under orthogonal transforma-
tions Q like

S0 = QSQ�1. (5)

In contrast to the scalar case, the Jordan normal form can not be used
as a standard position for this tensor. Due to its lack of symmetry, in
general there is no orthogonal transformation that can bring it into this
form. To overcome this problem, we make use of the Schur decom-
position as standard position. It can be interpreted as a generalization
of the spectral decomposition and always exists with an orthogonal
transformation.

4 Results

We constructed a dataset of different flow patterns with varying po-
sitions, sizes, velocities, background flows, and orientations to give a
nice overview of the behavior of the moment invariants. It is illustrated
in Figure 3. The search pattern is a vortex template, i. e., a simple lin-
ear center with a Gaussian dampening as an overlay, see Figure 2 (a).
For every position in the field and every scale, we render a sphere with
the following properties:

• The position of the match is the center of the sphere.
• The scale of the pattern is the radius of the sphere.
• The similarity of to the vortex defines the density of the sphere.

The result can be visualized with known methods for 3D scalar fields
as in Figure 4.
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Fig. 2. (a) Search pattern. (b,c) Volume rendering of the spheres field

for the quadrupole with moments computed up to grade two (b) and

grade three (c) respectively.

References

[1] R. Bujack, I. Hotz, G. Scheuermann, and E. Hitzer. Moment Invariants for
2D Flow Fields via Normalization. In Proceedings of the 2014 IEEE Pa-
cific Visualization Symposium, PacificVis 2014 in Yokohama, Japan, 2014.

Fig. 3. LIC slides through the data set. The field contains a sink (A),

an oval vortex (B), a bipole (half hidden here) (C), a vortex added to

a quadrupole (D), a saddle (E), a short vortex (F), and a long vortex

(G).

Fig. 4. Volume rendering of the spheres field with the transfer function

used. The streamlines are seeded by similarity of the moments.

[2] D. Cyganski and J. A. Orr. Applications of tensor theory to object recog-
nition and orientation determination. Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, PAMI-7(6):662–673, 1985.

[3] H. Dirilten and T. Newman. Pattern matching under affine transformations.
IEEE Transactions on Computers, 26(3):314–317, 1977.

[4] J. Flusser, B. Zitova, and T. Suk. Moments and Moment Invariants in
Pattern Recognition. Wiley, 2009.

[5] M. Schlemmer, M. Heringer, F. Morr, I. Hotz, M.-H. Bertram, C. Garth,
W. Kollmann, B. Hamann, and H. Hagen. Moment invariants for the anal-
ysis of 2d flow fields. Visualization and Computer Graphics, IEEE Trans-
actions on, 13(6):1743–1750, 2007.

[6] T. Suk and J. Flusser. Tensor method for constructing 3d moment invari-
ants. In Computer Analysis of Images and Patterns, volume 6855 of Lec-
ture Notes in Computer Science, pages 212–219. Springer Berlin, Heidel-
berg, 2011.


