
View-Dependent Coding of 3D Mesh Sequences
Semih Çelik∗

Istanbul Technical University
Uluğ Bayazıt†

Istanbul Technical University

ABSTRACT

Visibility computations are commonly used in computer graph-
ics applications. This paper presents a new view-dependent com-
pression technique for 3D mesh sequences. The approach con-
sists of geometry coding of visible parts and region descriptions of
changes in visible regions. The proposed view-dependent compres-
sion method yields significant improvement in compression perfor-
mance over compression method without visibility awareness with
gains up to 47%.

Index Terms: Computer Graphics [I.3.7]: Three-Dimensional
Graphics and Realism—Animation

1 INTRODUCTION

Mesh sequences are popularly used for visualization of moving syn-
thetic objects in computer simulation, film and game industries.
View-dependency is used in many application areas for 3D meshes
such as, visualization and lightening. The purpose of this paper is
adapting view-dependency to compression of 3D mesh sequences.
View-dependency has not been applied to 3D mesh sequences in
the literature. For static 3D meshes, two types of visibility based
compression methods have been applied.

Removal of invisible vertices has been applied to the compres-
sion of static meshes in some studies [1, 2, 3]. Additionally, some
studies allocate low bits to invisible parts of static meshes [4, 5, 6].

In our study, we assume that the viewpoint is known at the en-
coder. Another assumption is that the connectivity of the mesh is
constant over time.

The proposed method is based on removing invisible vertices
in each frame of a 3D mesh sequence. The decoder must have all
visible parts in each frame. There are three considerations of bit rate
change when visibility detection is incorporated into the proposed
system.

1- Bit reduction with removal of invisible vertices.
2- Required bits for region descriptions, which become visible

or invisible in current frame
3- Some vertices become visible in the current frame. These

vertices have no temporal reference.
The first two factors directly affect the bit rate, while the third

factor increases bit rate as much as the difference in efficiency be-
tween temporal and spatial compression methods.

2 PROPOSED METHOD

Our proposed system is composed of visibility detection, region
description and geometry coding. Edgebreaker ([7]) is applied to
first frame of mesh sequences to encode the constant connectivity.

2.1 Visibility Detection and Region Definitions
Ray-triangle intersection [8] is applied to detect which ver-
tices/faces are visible in the current frame. Each frame might be

∗e-mail: semcelik@itu.edu.tr
†e-mail:ulugbayazit@itu.edu.tr

divided into two regions as visible (R f
1) or invisible (R f

0) and four
regions as in Figure 1 based on changes of visibility (from f-1 to f):

R f
(0,0) : invisible in both previous and current frame

R f
(0,1) : visible parts, which are invisible previously

R f
(1,0) : invisible parts, which are visible previously

R f
(1,1) : visible in both previous and current frame

Figure 1: Region definitions for transition from frame f-1 to f.

In coding phase of any frame f, the encoder and the decoder
has the information of R f−1

0 and R f−1
1. Thus, describing one

of R f
(0,0) and R f

(0,1) also describes the other region. Similarly,
describing one of R f

(1,0) and R f
(1,1) is sufficient to describe the

other region.
Regions, which are visible or invisible in both frames f-1 and

f, are greatly larger than regions, which become visible or invisible
from frame f-1 to frame f. It is beneficial to represent visibility with
descriptions of R f

(0,1) and R f
(1,0).

2.2 Region Description
A modified version of the simple and efficient Edgebreaker algo-
rithm [7, 9, 10] is developed to represent regions. Edgebreaker
traverses a mesh by region growing. It encodes one of five sym-
bols {center (C), left (L), right (R), split (S) and end (E)} for each
face included into the region. The symbols indicate the direction
of traversal for following faces with respect to a reference edge
(gate). Edgebreaker algorithm requires less than 2n (guaranteed
higher bound) bits and 1.7n bits on the average to encode connec-
tivity of a mesh with n triangles.

In order to describe any region R, we developed a modified ver-
sion of Edgebreaker. The modified version employs a reduced al-
phabet of symbols split (S), right (R), left (L) and end (E). In our
coding scheme, symbol R replaces symbol C in Edgebreaker. Start-
ing with a gate g and a triangle X, coding decisions in possible cases
are shown in Figure 2.

Figure 2: Decision in different cases of boundary.

In Figure 2(a), symbol R replaces symbol C of the original Edge-
breaker. In Figure 2(b), 2(c), 2(d) and 2(e), the modified version
uses the same symbols of the original Edgebreaker.

Any face that lies in R f−1
0 cannot be included into R f

(1,0).
Likewise, faces in R f−1

1 are excluded from R f
(0,1).

Traversal algorithms visit all faces of a region once. In the traver-
sal of R f

(1,0), the faces of R f−1
0 and the already visited regions of



R f
(1,0) restrict the symbol set at each coded face of R f

(1,0). Similarly,

in the traversal of R f
(0,1), the faces of R f−1

1 and the already visited

regions of R f
(0,1) as well as R f

(1,0) restrict the symbol set at each

coded face of R f
(0,1).

Based on borders around the gate known at the decoder, there are
five different cases that are shown by Figure 3.

Figure 3: Different cases of borders known at decoder.

In Figure 3, bold edges represent the borders known at the de-
coder. Blue edges (g) are gates, and other dashed lines are unknown
at the decoder or irrelevant to the decision.

For the cases (a) and (b), possible symbols are S, L, R and E, for
the case (c), possible symbols are L and E, for the case (d), possible
symbols are R and E and for the case (e), possible symbol is E.
Decision for E-model is deterministically known at the decoder and
no encoding required.

For our specific purpose of descibing a region R, the entropy of
the the proposed modification to the Edgebreaker is 1.62, which is
lower than Edgebreaker with 4 symbols (1.68) and absolutely lower
than the original Edgebreaker (with 5 symbols).

2.3 Geometry Coding
In our coding scheme, we encode two kinds of vertices, which are
inside of R f

(0,1) or R f
(1,1). Both regions are possibly composed

of smaller, unconnected regions. Vertices inside R f
(0,1) only have

local spatial reference. Vertices inside R f
(1,1) have both spatial ref-

erence and temporal reference.
For spatial prediction, parallelogram prediction is used. For tem-

poral prediction, motion vector averaging prediction ([11]) is used.

2.4 Entropy Coding
We quantize residuals by a dead zone quantizer with quantization
bin width 2∆ around zero and ∆ everywhere else. The value of ∆

determines the amount of data loss.
Quantized residuals are encoded with an adaptive arithmetic

coder as discussed in [12]. Probabilities in all previous frames are
used to compose the model for the coding of current frame.

3 EXPERIMENTS

As a benchmark, we implemented a view-independent method,
which has same quantization and prediction methods with the pro-
posed view-dependent compression system.

Rate-distortion results of experiments are given in Figure 4. We
used the distortion metric defined in [13] as KG-error. Bit rates are
given in units of bit per vertex per frame (bpvf). In the experiments,
chicken crossing mesh sequence is used. The chicken crossing se-
quence has 3030 vertices, 5664 faces and 400 frames.

According to tests in three viewpoints, invisible parts have aver-
age of 1498.4 vertices, which is not encoded. A significant com-
pression gain (25% to 47% experimentally) is achieved by using
proposed view-dependent compression method.

4 CONCLUSION

In this study, we presented a predictive compression of 3D mesh
sequences with encoding only visible vertices. Additionally, we
developed our region description algorithm based on Edgebreaker
to represent changes in visibility. We showed that view-dependent

compression of mesh sequences exploits visibility of meshes to re-
duce bit rate significantly (up to 47% experimentally).

In the future, our system could be modified with prediction of
next viewpoints and extending the visible area to cover future visi-
bility of 3D mesh sequences.

Figure 4: Compression of chicken sequence.VIC represents the
view-independent compression. VDC-1, VDC-2 and VDC-3 repre-
sent the proposed view-dependent compression (three viewpoints).

REFERENCES

[1] Sheng Yang, Chang-Su Kim, and C.-C. Jay Kuo. View-dependent pro-
gressive mesh coding for graphic streaming. In Multimedia Systems
and Applications IV, volume 154, August 2001.

[2] Wei Guan, Jianfei Cai, Jianmin Zheng, and Chang Wen Chen.
Segmentation-based view-dependent 3-d graphics model transmis-
sion. IEEE Transactions on Multimedia, 10(5):724–734, August 2008.

[3] F Payan, M Annonini, and F Meriaux. View-dependent geometry cod-
ing of 3d scenes. In IEEE International Conference on Image Process-
ing (ICIP), pages 729–732, November 2009.

[4] Pierre Alliez, Nathalie Laurent, Henri Sanson, and Francis Schmitt.
Efficient view-dependent refinement of 3d meshes using sqrt3-
subdivision. The Visual Computer, 19(4):205–221, 2003.

[5] Sheng Yang, Chang-Su Kim, and C.-C. Jay Kuo. View-dependent
progressive mesh coding based on partitioning. In Visual Communi-
cations and Image Processing, volume 268, January 2002.

[6] Wei Guan, Jianfei Cai, Juyong Zhang, and Jianmin Zheng. Progres-
sive coding and illumination and view dependent transmission of 3d
meshes using r-d optimization. IEEE Transactions on Circuits and
Systems for Video Technology, 20(4):575–586, apr 2010.

[7] Jarek Rossignac. Edgebreaker connectivity compression for triangle
meshes. IEEE Transactions on Visualization and Computer Graphics,
5(1):47–61, 1999.

[8] Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle
intersections. Journal of Graphics Tools, 2(1):21–28, 1997.

[9] Jarek Rossignac, Alla Safonova, and Andrzej Szymczak. 3d compres-
sion made simple: Edgebreaker on a corner-table. In Shape Modeling
International Conference, pages 278–283, 2001.

[10] Jarek Rossignac, Helio Lopes, Alla Safanova, Geovan Tavares, and
Andrzej Szymczak. Edgebreaker: A simple compression for surfaces
with handles. In In Proceedings of the seventh ACM symposium on
Solid modeling and applications, pages 289–296. ACM Press, 2002.

[11] N Stefanoski and J. Ostermann. Connectivity-guided predictive com-
pression of dynamic 3d meshes. In IEEE International Conference on
Image Processing, pages 2973–2976, 2006.

[12] Ian H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic cod-
ing for data compression. In Communications of the ACM, volume 30,
pages 520–540, 1987.

[13] Zachi Karni and Craig Gotsman. Compression of soft-body animation
sequences. Computers and Graphics, 28(1):25–34, 2004.


