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Fig. 1: Visualization of the value matrix. (a) Parallel coordinate plot. 
(b) Value matrix.  
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ABSTRACT 

The Generalized Barycentric Coordinates (GBC) plot is often used to 

visualize high-dimensional data in 2D. However, its mapping is not 

overly accurate in some cases. We propose an algorithm that adjusts 

the GBC layout as well as the data points inside the GBC. It consists 

of ordering the variables by a correlation-based method and an itera-

tive error-reduction scheme. We provide two examples to evaluate 

our method, quantitatively and qualitatively.  

1 INTRODUCTION  

The visualization of high dimensional data has become a frequently 

studied topic. The objective typically is to find patterns in the data, 

such as clusters as well as outliers to these clusters. One method is 

the Generalized Barycentric Coordinates (GBC) plot [1]. Its attrib-

utes are the vertices of a regular sided polygon and the samples form 

patterns in its interior.  

Our method is inspired by systems that arrange the nodes repre-

senting the attributes along a convex shape and lay out the data 

points in the interior of this shape. The most well-known framework 

of this kind is RadViz [2] which uniformly spaces the attributes as 

dimensional anchors along the circumference of a circle. The loca-

tion of the data points is then determined by a weighting formula 

where data point attributes with higher values receive a higher 

weight and so increase the attraction of the point to the correspond-

ing anchor points. However, this can lead to location ambiguities 

which can be reduced by re-ordering the anchor points either manu-

ally or algorithmically. Related to RadViz is Gravi++ [3] which uses 

a different weighting formula but also spaces the attributes at uni-

form distances onto an encompassing circle. GBC can be viewed as a 

generalization of all of these systems.  

While the GBC is more flexible than other methods, in order to 

show more accurate relations between the data points and variables, 

it needs to adjust the data points. Our algorithm also lays out the 

variables on the general convex polygon, but the distance of two 

variables is determined by correlation similarity. Lastly, since the 

data points are also not comprehensive in terms of relative positions 

to the variables, we give an iterative error-reduction scheme. 

2 THE GENERALIZED BARYCENTRIC COORDINATES (GBC) 

To conduct our experiments, we generated a test dataset comprised 

of a set of 6 6-D Gaussian distributions. Fig. 1a visualizes this da-

taset using parallel coordinates, assigning each Gaussian a unique 

color. In addition, we also colored the axes (representing the 6 di-

mensions or variables) such that each axis color matches that of the  

cluster with the highest value for that dimension.    

 Fig. 1b shows what we call the value matrix. It visualizes the 

normalized attribute values of the center vectors using a single-hue 

sequential color scheme as a function of cluster ID (x-axis) and di-

mension (y-axis). Darker blue tones correspond to higher values.  

2.1 The GBC Plot 

The GBC plot is derived from GBC interpolation [1] which extends 

the method of barycentric interpolation from 

triangles to multi-vertex convex polygons. The 

task is to interpolate the value of an interior 

point p from the values stored at the polygon 

vertices vi. Referring to Fig. 2, the interpola-

tion weight wi of vertex vi for p is:   
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Then, given N vertices, the interpolated value 

pv at p is: 
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The GBC plot seeks to compute the position of a point p in a convex 

polygon in which each vertex is assigned to one of the attributes. 

This replaces pv by the 2D vector p, and the vi by the 2D coordinates 

of the attribute vertices. We then set the weights to be the values of 

the N-dimensional vector, normalize them to compute the ai, and 

finally use the 2D coordinates of the attribute vertices to interpolate 

the 2D coordinate of p. Fig. 4a shows a resulting layout, coloring the 

clusters and the polygon vertices in the same shade as in Fig. 1.  

3 ALGORITHM  

3.1 Correlation Ordered Variables 

Some existing methods, such as star coordinates, have become better 

by modifying the arrangements of the variable nodes or coordinate 

systems. We can try to see if this also helps for the GBC plot. In this 

spirit, we might hypothesize that when the correlation of two varia-

bles is high, they are more similar and should be put closer, else they 

should be spread more apart. Since we are bound to preserve a linear 

ordering of the vertices on the polygonal hull, we need to generate 

some ordering that can maximize this goal. We can accomplish this 

by arranging the vertices through an approximate Traveling Sales-

man Problem (TSP) solver that operates on the matrix of pairwise 

correlations among the variables. TSP has been successfully em-

ployed to determine a good axis ordering for parallel coordinates [4].  

We place all attribute vertices on a circle, ordered by the correla-

tion-based TSP solver and spaced apart by the reverse pairwise cor-

relations. In this way, the relative positions of variables to variables 

become more accurate and comprehensive. Fig. 4 shows an example.  

3.2 Iterative Error Reduction 

Next, we explore if an iterative error-reduction scheme can improve 

matters. It seeks to reconstruct an error polygon for each data point Email:{shecheng, wang12, zyzhang, mueller}@cs.sunysb.edu 
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Fig.3: Illustration and algorithm. 

Fig. 4  (a)  Original GBC                        (b) Modified GBC 

  

and iteratively reduce size of 

this polygon. Our method is 

illustrated in Fig. 3 along with 

the algorithm. 

The first assumption this al-

gorithm makes is the existence 

of a set of distance contours that 

encode the importance of a 

variable to a given data point. 

Suppose we have the variables 

               and a data point 

X = (               ). Fig. 3 

examines the distance contours 

for variable V4. Assuming that 

X has been normalized to a unit 

vector, the maximum im-

portance a variable can have is 1.0. This would mean in the case 

examined that x4=1.0 and so X would coincide with V4’s vertex in 

the plot. In contrast, if x4=0.0 which is the minimum importance, 

then with the current vertex ordering X would need to fall on the 

edges V5V1 , V1V2 or V2V3. Any other value would lead to a place-

ment of X onto some contour in between. Fig. 3 shows the contour 

        
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  for x4=0.6. The contour is constructed by connecting V4 

with all vertices Vi and marking the points Pi where                
     . Connecting these points yields the desired contour.  

Next we find V4’s vertex on the error polygon (marked as    
) by 

intersecting the contour with the line that connects V4 with X. Per-

forming this procedure for all variables yields all vertices of the error 

polygon (marked as polygon    
   

   
   

   
). The iterative step 

concludes by moving X into the center of the error polygon, and then 

a new iteration begins.   

In practice we iterate about 50 times which completes in a couple 

of seconds and so does not cause a significant performance drop. The 

result of this algorithm for our test data set is shown in Fig. 4b.  

Overall, the GBC comprehensive layout algorithm is as follows. 
Algorithm 1: GBC Comprehensive Layout  Algorithm  

1. Reorder the variables by TSP and space them. 

2. Initial: set the error threshold and maximum iterations. 

If error < threshold || iterations > maximum, return.  

    For each data point Xi 

        For each variable Vj   

          Compute distance contour 

          Compute error polygon vertex     
  

    Construct error polygon EPi formed by      (j=1, 2,.., n) 

    Move Xi to the center of EPi  

Compute the overall error and iterations. 

4 EVALUATION  

A simple approach to evaluate the GBC plot is the size of the error 

polygon. The better layout should have a smaller error polygon. 

Suppose a dataset with m data points and n dimension. The distance 

of the ith data point to the jth dimension point is     with the error     

in this dimension. Then the error ratio   of the CBC plot in terms of 

this data is  
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The error ratio of the test data reduces from 35.7% to 24.3%. 

5 CASE STUDY 

We obtained a collection of stock data online: 1,662 stocks with 21 

metrics (Fig. 5). We cluster the stocks into 4 clusters with different 

colors. Fig. 5a is the original GBC plot and Fig. 5b is the modified 

one. We can see that in Fig. 5a, most points are congested in the 

corner and there is much overlap. The features of the clusters cannot 

be well appreciated. By contrast, Fig. 5b shows the stock better. The 

four clusters have broken away. In addition, the error ratio reduces 

from 11.2% to 2.4%. 

 

6 CONCLUSION  

In this poster, we propose an algorithm to adjust the GBC layout as 

well as the data points located inside the GBC. First, we reorder the 

variables and space them according to the pairwise correlations. It 

can give a more accurate layout of variables. Second, we move the 

data points iteratively to reduce the error area size. We then define 

and show the error ratio.  
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Fig.5.  GBC with stock data. (a) original GBC (b) modified GBC 

 


