
Cache-Aware Iso-Surface Volume Rendering with CUDA
Junpeng Wang∗

Virginia Tech
Fei Yang†

Chinese Academy of Sciences
Yong Cao‡

Virginia Tech

ABSTRACT

Most of the GPU-based ray casting algorithms map volume data to
3D texture of the GPU, so that the hardware-accelerated tri-linear
interpolation could be taken advantage of. However, in hardware,
texture cache is implemented in a 2D fashion. As a result, the view-
ing direction has a significant effect on the texture cache hit rate.
This paper presents a new sampling strategy, i.e. warp marching,
for the ray casting algorithm. The new strategy samples volume
data in a cache-friendly manner and displays a novel computation-
to-core mapping. We apply it to the existing iso-surface volume
rendering algorithm and demonstrate significant performance en-
hancements in certain viewing directions.

1 INTRODUCTION AND RELATED WORK

Ray casting algorithm is inherently a parallel algorithm, where each
casted ray can be calculated in parallel without computational de-
pendency. The algorithm, therefore, is well adopted to graphics
processing units (GPUs).

Due to the fast hardware-accelerated tri-linear interpolation, 3D
texture becomes the best choice to store volume data. However,
the optimization of texture cache is limited in 2D space [2]. As
a result, cache performance in some viewing directions is poor.
Existing algorithms try to hide the cache penalty by reorganizing
volume data into small bricks with varying orientations [5] or by
dynamically adjusting thread block shape according to viewing di-
rection [4]. These solutions, however, did not noticeably improve
cache performance when facing certain directions. Here, we ad-
dress this problem by introducing a new cache-friendly sampling
strategy.

2 MOTIVATION

There are different variations of the GPU-based volume ray casting
where, for most cases, one ray is mapped to one GPU thread. Such
basic strategies have been taken for granted, and can be seen in
recent literature [1]. We call this mapping of rays to threads the
Standard method. At any given instance, the samples of all rays
are fitted into a plane, sampling plane. The algorithm accesses all
these samples on the plane in parallel. It then marches this plane
from front to back along a given camera orientation.

In CUDA, threads are organized as grids of blocks. 32 threads
form an atomic group, i.e. warp, when mapped to GPU hardware.
To achieve a good cache performance, memory stride inside such
an atomic group of threads should be minimized [2,4]. Volume data
mapped to 3D texture is organized as many 2D slices, and z-curve
is used to optimize the spatial locality inside each slice. When the
sampling plane is aligned with these 2D slices (Figure 1, facing
XY), the cache hit rate is high. But, when the plane is perpendicular
to these 2D slices (Figure 1, facing ZY), the cache performance is
poor, because samples cover different slices and are far from each
other in the memory space.

∗e-mail: junpeng@vt.edu
†e-mail: yangfei09@mails.gucas.ac.cn
‡e-mail: yongcao@vt.edu

Z

facing XY facing ZY

X

Y

X

Y

Z

Figure 1: Effects of different viewing directions.

3 WARP MARCHING

We propose a new sampling strategy that demonstrates a different
computation-to-core mapping. Compared to the standard method
(Figure 2 a) which assigns one thread to a ray, this strategy assigns
one warp of threads to a ray (Figure 2 b). To simplify the illustra-
tion, we assume one warp has four threads. At any given time, the
thread warp samples multiple points along the ray in parallel. Then,
it marches along the ray direction in this manner from front to back
until it finds the iso-surface. Because the algorithm marches a warp
size of samples at a time, we call it warp marching.

(a) Standard

(b) Warp Marching

cycle 1
cycle 2

cycle 1 cycle 2

Figure 2: Different sampling strategies (four threads per warp).

The iso-surface volume rendering algorithm can be broken down
into three steps: (1) ray bounding-box intersection tests; (2) casting
rays through the volume to find iso-value positions; (3) shading on
these positions. In our implementation, each step is a CUDA kernel.
We only focus on the second kernel to apply warp marching, since it
is the performance bottleneck. To handle the new computation-to-
core mapping strategy, three cases need to be considered according
to three possible relationships between the densities of a warp of
samples and the iso-value:

a) density values are all lesser than the iso-value;
b) density values are all larger than the iso-value;
c) some density values are lesser than the iso-value, while others

are larger than the iso-value.

We give each thread of the warp a flag bit. If the sample’s density
is lesser than the iso-value, the bit is set to 0, otherwise it is set to

1. Then the warp voting function, i.e. ballot(), can be used to
quickly get the state of the whole warp. For case a, the warp voting
function returns 0x0 (four threads per warp). For case b, it returns
0x f . In both cases, the warp of samples are simply skipped. Finally
rays can march through spaces that do not contain the iso-value. For
case c, the warp voting function returns a value between 0x0 and
0x f . This is the case where the iso-value is detected. Here, we need
to identify the thread that takes the sample around the iso-value
position (apply clz() to the value returned from ballot()),
and have it do a linear interpolation to find the iso-surface.

Two special cases which do not occur in any of the situations
described so far need to be considered carefully. The first one is
when the iso-surface is located in the gap between two cycles of
a warp (Figure 3 left). The first cycle of the warp gets state 0x0
and skips the warp of samples. The second cycle of the warp gets
state 0x f where it again skips all samples. Thus warp marching has
missed the iso-value completely. Such a condition can be managed
by having the warp walk back one sample, so that it becomes the
case c we discussed before. The second special case involves the
boundary condition. When density ≥ iso−value, we set the flag bit
to 1. However warp marching cannot detect the iso-value if it is
on the first sample of the warp (Figure 3 right). To address this,
warp marching tests whether the first sample’s density is equal to
the iso-value, in the first cycle. This problem will not happen in the
second cycle and cycles after, since warps go back one sample in
every marching step.

1 1 1 1

0xf

Figure 3: Special cases of iso-surface warp marching.

4 RESULT

beetle (16-bit, 0.65 GB)
832×832×494

bat (8-bit, 1.12 GB)
906×911×1466

Table 1: Experiment data sets and dimensions.

Results in this section are collected from an NVIDIA GeForce GTX
TITAN GPU. Texture cache hit rates are collected by CUPTI [3].
Two experiment data sets (Table 1) are rendered in a resolution of
1024×1024 respectively. To reflect the distance between rays, we
record the projected resolution of volumes (listed under the name of

data sets in Table 2). This resolution and the volume dimension to-
gether decide the distance between samples on the sampling plane.
For example, the X dimension of beetle is 832, and the projected
length of this dimension is 875, so distance between rays is 0.95
voxel length. For bat, this distance is 1.57. To keep the distance
constant during marching, an orthographic projection is applied.
Sampling distance along rays is fixed at 0.3 voxel length.

When facing XY plane of the volume, the standard method is al-
ways better than the warp marching. A warp of threads in this map-
ping strategy take samples on the same 2D slice, and these samples
are close to each other in the memory space. Warp marching, on the
contrary, takes samples across slices. However, since the distance
along rays is fixed at a small constant value, it also achieves real-
time rendering performance (though not as good as the standard
method). When facing ZY plane, warp marching is significantly
faster than the standard method. In this direction, texture cache hit
rate of the standard method is very low, because threads of the same
warp take samples from different slices of the volume. The memory
gap goes beyond the cache size, consequently resulting in poor ren-
dering performance. In the same orientation, samples of the same
warp in warp marching are taken from the same slice and the dis-
tance between them is fixed at 0.3 voxel length. So, warp marching
significantly outperforms the standard method.

The viewing direction effect is extraordinarily significant in the
demonstrated results. One reason is the large size of the experiment
data sets. Also, the results are collected without any optimizations
of the ray casting algorithm. Some optimizations, such as empty
space leaping, might be able to mitigate the viewing direction ef-
fect, since they reduce texture fetching operations.

Facing XY Plane Facing ZY Plane

beetle bat beetle bat
875×875 576×579 520×875 932×579

Standard 94.67% 94.13% 56.32% 33.13%
Warp Marching 78.58% 75.33% 95.83% 97.38%

Speedup 0.83 0.80 1.70 2.94

Standard 39.62 30.13 9.80 2.10
Warp Marching 31.92 25.81 35.99 29.49

Speedup 0.81 0.86 3.67 14.04

Table 2: Texture cache hit rate (top) and fps (bottom).

5 CONCLUSION AND FUTURE WORK

We introduce a new sampling strategy for the texture-based iso-
surface volume rendering. The strategy takes advantage of cache
coherence and increases rendering performance at certain camera
orientations.

Applying warp marching to other types of GPUs, even those with
varying warp sizes, is a promising direction for future exploration.
Also, a hybrid approach that adjusts sampling strategy based on
viewing direction is worth trying.

REFERENCES

[1] K. Engel, M. Hadwiger, J. M. Kniss, A. E. Lefohn, C. R. Salama, and
D. Weiskopf. Real-time volume graphics. In ACM Siggraph 2004
Course Notes, page 29. ACM, 2004.

[2] NVIDIA. Cuda c programming guide. NVIDIA Corporation, 2013.
[3] NVIDIA. Cupti user’s guide. NVIDIA Corporation, July, 2013.
[4] Y. Sugimoto, F. Ino, and K. Hagihara. Improving cache locality for ray

casting with cuda. In ARCS Workshops, pages 339–350, 2012.
[5] D. Weiskopf, M. Weiler, and T. Ertl. Maintaining constant frame rates

in 3D texture-based volume rendering. Proceedings Computer Graph-
ics International, 2004., pages 604–607.

