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Abstract— Semantic interaction offers an intuitive communication mechanism between human users and complex statistical 
models. By shielding the users from manipulating model parameters, they focus instead on directly manipulating the spatialization, 
thus remaining in their cognitive zone. However, this technique is not inherently scalable past hundreds of text documents. To 
remedy this, we present the concept of multi-model semantic interaction, where semantic interactions can be used to steer multiple 
models at multiple levels of data scale, enabling users to tackle larger data problems. We also present an updated visualization 
pipeline model for generalized multi-model semantic interaction. To demonstrate multi-model semantic interaction, we introduce 
StarSPIRE, a visual text analytics prototype that transforms user interactions on documents into both small-scale display layout 
updates as well as large-scale relevancy-based document selection. 
Index Terms— Visual analytics, Semantic Interaction, Sensemaking, Text Analytics. 

1 INTRODUCTION 
The problem of “too much data” has become a significant challenge 
in unstructured text sensemaking. Analysts are expected to “connect 
the dots” across many documents [19], requiring analysts to work 
across multiple models to manage different portions of the 
sensemaking loop [28]. 

During foraging, analysts work at the large scale (beyond data 
displayed on the screen). Because the number of documents 
available far outweighs the number of relevant documents (e.g. 
millions of documents with hundreds or fewer relevant documents), 
the low signal-to-noise ratio makes this a “needle in a haystack” 
problem. Thus, analysts need methods of honing in on and finding 
additional relevant documents. Additionally, analysts must find all of 
the relevant documents in order to avoid missing important pieces of 
information. Relevance models are helpful at this scale. 

 During synthesis, analysts work at the small scale (e.g. the 

amount of data that comfortably fits onto a display) with hundreds or 
fewer documents. A common synthesis strategy is to spatially 
organize information on the display [1]. Spatialization and 
dimensionality reduction models are helpful at this scale [10]. The 
analyst then performs synthesis on these documents to make sense of 
them, but may have need for additional information.   

Thus, the sensemaking process consists of continuous iteration 
between foraging and synthesis, using multiple models to 
accomplish different sensemaking-related tasks. However, current 
tools require the analyst to break from synthesis actions to forage for 
additional information, which interrupts their cognitive processes. 

We propose unifying the sensemaking loop by coupling synthesis 
with foraging, and therefore coupling the corresponding models and 
interactions, resulting in a multi-model approach. In other words, 
synthesis activities can be interpreted to forage for additional 
relevant information and filter out irrelevant data. Likewise, foraging 
activities can influence synthesized structure.  To accomplish this, a 
method of usable control over coupled models is needed. 

Models which support computing data relevance (foraging) and 
spatial layout (synthesis) typically require parametric interaction, but 
most analysts are not experts in these underlying models and are ill-
equipped to interact directly with the parameters. Instead, semantic 
interaction (SI) techniques convert user interactions within a 
spatialization into parametric feedback, enabling a spatialization that 
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Fig. 1. StarSPIRE spatial workspace showing clusters of open documents and numerous iconified documents selected and arranged through 
semantic interaction.
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is jointly created by user and algorithm [12, 14]. These techniques 
shield the user from the complexity of underlying spatialization 
algorithms and allow them to focus on data analysis. However, 
semantic interaction has been limited to steering a single underlying 
model with fewer than 1000 data points.  

Our goal is to generalize semantic interaction to simultaneously 
steer multiple models. This involves new challenges in mapping 
semantic interactions to multiple model parameters in a coordinated 
way and conveying combined model output via visual feedback. 
Specifically, we instantiate this for the purpose of leveraging models 
at different levels of data scale to support larger datasets. In our 
method, users invoke semantic interaction techniques in order to 
incrementally adjust a spatial layout model as well as influence what 
information is presented to them via a relevancy model.  

We present three contributions: (1) The concept, named Multi-
Model Semantic Interaction (MSI), is an alternative to explicitly 
controlling parameters in multiple models. (2) We formalize this 
extension in the form of an updated visualization pipeline that 
reflects the generalizability of semantic interaction to multiple 
models. (3) To demonstrate multi-scale semantic interaction, we 
present StarSPIRE [Figure 1], a visual analytics prototype 
implementing MSI for unstructured text data, which has been tested 
on datasets up to 10,000 text documents. We conclude with a 
discussion of multi-model semantic interaction and research 
directions moving forward. 

Table 1. Multiple levels of data scale and their associated models, 
visualizations, and feedback mechanisms. 

2 RELATED WORK 
Spatializations are frequently employed to aid sensemaking (foraging 
and synthesis) of unstructured text documents [2, 21, 30, 33, 34]. 
Large, high-resolution displays in particular have been found 
beneficial in affording a large, flexible workspace that allows users 
to externalize knowledge and create semantic schemas [1]. However, 
this knowledge externalization is typically achieved through 
parametric interactions (e.g. [22]), many of which require users to go 
outside the spatial metaphor by manipulating control panels [11]. 
Furthermore, parametric interaction does not easily scale to big data 
problems. In unstructured text data, dimensions map to the terms or 
entities contained in the documents. Thus, the dimensionality of the 
data grows extremely large as the number of documents increases. 
Aside from navigating through the flood of dimensions, altering 
multiple models becomes extremely tedious. If multiple models are 
used for layout and/or retrieval, the user must update the dimensional 

weights or parameters for each model. To remove this redundancy, 
we prefer to contain the interaction within the spatial metaphor and 
translate interactions into parametric feedback. 

For tools that allow users to stay within the spatial metaphor, 
parametric interaction is still common. For example, Dust & Magnet 
allows users to manipulate spatial landmarks to adjust the 
spatialization of multi-variate data [35]. However, these landmarks 
are attributes of the data, not points themselves. The users only have 
control over the parameters in the space. Similarly, VIBE allows 
users to designate keywords as spatial landmarks [27]. In MSI, users 
can designate specific data points as spatial landmarks. These 
landmarks attract other data points (e.g. documents) based on the 
high-dimensional data instead of a single attribute or dimension. 

Systems exist which allow users to directly manipulate data 
points, interpret this feedback via a dimensionality reduction model 
to generate a new spatialization that better reflect the user’s 
understanding of the high-dimensional data [6, 14, 20]. These 
methods inherently suffer from scalability issues. Users expect a 
quick interaction-feedback loop in order to remain in their “cognitive 
zone” [16], but calculations on thousands, let alone millions, of data 
points take from minutes to hours to complete. It is more practical to 
perform dimensionality reduction on a subset of a much larger data 
set and use information retrieval techniques to retrieve additional 
information to add to the workspace. 

MSI is perhaps most similar to adaptive query-by-example 
systems. These systems, such as Adaptive Information Retrieval [3], 
use relevance feedback to augment future retrieval requests to return 
results that are better tuned to the user(s). Attempts have been made 
to visualize information retrieval results (e.g. term distribution charts 
[18], self-organizing semantic maps [25]), but these techniques have 
not been widely adopted. Information retrieval results are typically 
visualized as a ranked list of results [26]. Presenting results in this 
format is suitable for targeted queries where the user may view a 
handful of results at most (e.g. a web search for a specific culinary 
recipe). However, when the user is presented with hundreds of viable 
documents worth reading (e.g. an intelligence analysis task) that 
relate in complicated, intricate, and fuzzy ways, a linear list becomes 
less than ideal [5]. 

Card presents a survey of visualization techniques for huge 
amounts of unstructured text data [7]. These techniques include, but 
are not limited to, dimensionality reduction (e.g. [33]), semantic 
maps (e.g. [25]), hierarchies (e.g. [4]), and link-node diagrams (e.g. 
[24]). We have chosen to explore dimensionality reduction 
techniques and link-node diagrams for representing unstructured text 
data, but we recognize the potential to explore other visual 
representations in the future.  

Choo and Park provide an overview on scaling computational 
methods to the problem of big data [8]. In our research, we have 
chosen the data scale confinement solution. By constraining the 
visualized data to a subset of the actual dataset, dimensionality 
reduction calculations grow much more efficient than computing 
across the entire dataset. This motivates our multi-scale approach to 
sensemaking. After performing information retrieval requests on the 
entire data set to procure a subset, the subset can be run through a 
suitable spatial layout model. 

We have developed multi-model semantic interaction in order to 
accommodate the need to work with extremely large amounts of data 
while staying within the spatial metaphor and interpreting 
interactions to manipulate multiple data models. 

3 SEMANTIC INTERACTION 
Semantic interaction serves as means for analysts to work with data 
within a spatialization instead of altering algorithms or the raw data 
[Figure 2]. This is particularly important when the analyst is a non-
expert in the layout model(s). 

To develop semantic interaction, we first observed analysts, both 
novice and expert, completing sensemaking tasks and recorded the 
actions analysts undertook [1, 5, 13]. We then harnessed these 

Scale of 
Interaction 

Small  Large 

Sensemaking 
Loop 

Synthesis Foraging 

Model purpose Spatially project small 
scale data points onto the 
display, e.g. based on 
similarity 

Extract useful data 
from large scale, e.g. 
based on relevance or 
coverage 

Usage 
Description 

System lays out displayed 
data, according to user’s 
spatial organization 
feedback 

System selects data 
to display based on 
relevance according 
to user’s interests 

Model  Dimensionality reduction Relevance-based data 
selection 

Model 
Parameters 

Dimension weights Dimensions weights 

Model metrics Similarity metric Relevance metric 
Visualization Similarity mapped to 

visual proximity 
Relevance mapped to 
working set, glyph 
size, and saturation 

Interactive 
Feedback 

Semantic interactions (see Table 2) update the 
dimension weights 
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actions such that the system could learn from the user which terms 
were important to them in their analysis, resulting in semantic 
interaction [12]. Previously, we have applied this technique to 
unstructured text data in a modified force-directed layout, allowing 
the semantic interactions to update the spatial layout, which used a 
“near = similar” metaphor. Alternatively, semantic interaction has 
been applied to additional dimensionality reduction models, namely 
Multi-Dimensional Scaling (MDS), Principle Component Analysis 
(PCA), and Generative Topographic Mapping (GTM) [14]. Semantic 
interaction has been practically applied to Multi-Dimensional 
Scaling using multivariate data, although the interactions were 
limited to moving and highlighting data points [20]. 

While current forms of semantic interactions have shown to be 
successful, they are limited in the number of data items they can 
handle simultaneously (less than 1000) and have been limited to 
steering a single model (spatial layout). Thus, semantic interaction 
alone is not adequate for tackling the challenge of big data.  

4 MULTI-MODEL SEMANTIC INTERACTION 
We addressed the scalability concern by developing a generalized 
semantic interaction pipeline where multiple models can be 
leveraged, providing functionality across multiple levels of data 
scale. The result of this pipeline is a spatialization with which the 
user can interact, externalizing their knowledge of the data. These 
interactions are then converted into parametric feedback in order to 
update the underlying model(s), and ultimately, update the spatial 
representation of the data to reflect these changes [Fig. 3]. 

Using [Table 1] as a guide for interaction and visualization at 
multiple levels of data scale, we see that small amounts of data map 
to dimensionality reduction models, while large amounts of data map 
to retrieval models. Using semantic interaction techniques, we seek 
to communicate with and between these various models in order to 
update the spatialization, select potentially relevant new information, 
and filter out irrelevant data. 

At the large scale, semantic interactions are mapped to retrieval 
requests, which serve to constrain the amount of data piped into a 
display layout model by extracting a working set of relevant 
documents, which then creates a spatialization with which the user 

can interact. The interactions done within the spatialization are then 
interpreted to influence the layout and/or retrieval models. Thus, the 
user is able to work with multiple models working at multiple levels 
of scale through interactions done on the data in the spatialization. 

For example, if a user executes a search for a term, documents 
containing this term in the spatial workspace would be drawn closer 
to the search node and the system would query the larger  “behind 
the scenes” dataset for this term and add the top n retrieved 
documents that surpass a relevance threshold, ranked by the 
importance the user has given to entities. This is an incremental 
formalism approach [29] wherein the system considers the history of 
interactions to gradually construct and refine the user’s interest 
model of the data. In addition to just retrieving documents, multi-
scale semantic interaction augments the relevance model to tune the 
results to the user’s interests. 

In terms of the sensemaking loop [28], synthesis actions  are used 
to drive foraging activities and many foraging activities are able to 
be conducted implicitly instead of explicitly. For example, as the 
user constructs a cluster by dragging documents together, the system 
can search the entire dataset for documents that are similar to the 
shared terms in the clustered documents and add them to the 
workspace. Foraging actions such as these that are conducted 
through implicit means allow for a richer and more nuanced query 
than explicit actions. For example, an explicit search for additional 
documents may take the form of a boolean search. An implicitly 
constructed query could go beyond boolean values to indicate the 
relative importance of terms as well as include a far greater number 
of terms than the user is likely to enter. This method of implicit 
query formation attempts to return semantically relevant information 
to the user and seeks to fill in gaps of knowledge that a strict boolean 
search might miss. 

In addition to bringing information into the spatial workspace, 
multi-model semantic interaction also filters out irrelevant 
information. If a user indicates that a document or term is 
uninteresting or not relevant to their current investigation, the system 
will interpret this interaction to update the user’s interest model 
parameters to reflect this. Accordingly, information related to this 
document or term would be filtered or removed from the display and 
would be less likely to be returned from information retrieval 
requests. 

Multi-model semantic interaction conveys the output of the 
multiple models through visual encodings to convey document 
relevance and relationships between documents. This serves to give 
the user immediate visual feedback regarding their interactions. 

4.1 Updated Visualization Pipeline 
We present an updated visualization pipeline to reflect multi-scale 
semantic interaction [Figure 3]. The initial spatialization is 
constructed by taking the data, or a working set of the data as 
determined by a relevance model, and passing it through a display 
layout model. The user then perceives the spatialization and has the 
option of interacting with the data within the spatial metaphor. All 
interactions are interpreted and directed to the appropriate inverted 
model(s). The inverted models then are combined, if necessary, and 
the new parameters are stored in the user’s high dimensional model 

Fig. 2. Top: original visualization pipeline showing user interaction at 
the algorithmic and data levels Bottom: semantic interaction 
visualization pipeline showing user interaction within the spatialization, 
which is then interpreted by the model to extract parameters (stored in 
the system as “soft data”), which are used to update the spatialization. 

Fig. 3. Generalized multi-model semantic interaction visualization pipeline. Any number of models can be inserted for use in this pipeline. Once 
the user perceives the spatialization, they can choose to interact in it. This interaction feedback is interpreted as input to one or many inverted 
models. The updated model parameters are stored, which are then used, along with the original data, to create an updated spatialization. 
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of the data. This high dimensional model is then coupled with the 
dataset to pass through the retrieval and projection portion of the 
loop, resulting in an updated spatialization. This pipeline currently 
assumes a single shared set of model parameters. Possible extensions 
of this pipeline include multiple user models for the data (e.g. the 
user believes the data should be arranged in a different manner than 
what the user believes should be displayed). 

Not all semantic interactions will necessarily influence every 
model or have the same impact. We offer a few examples to illustrate 
this point. Highlighting a phrase in a document typically indicates its 
importance, while minimizing a document when space is not 
constricted typically indicates the unimportance of its contents. 
Moving points around the display would naturally update the display 
layout, but would not necessarily fetch new data points for the 
workspace.  

Furthermore, updates to the underlying models should be 
executed wisely. Updating a model that impacts the entirety of the 
data set will likely be a slow operation, whereas a display layout 
model operating on a small subset of the data can be executed much 
quicker. Therefore, it is practical to update the display layout model 
with each semantic interaction, but it may not be practical to do so 
for the information retrieval model. Obviously, if a user explicitly 
queries for information, it should be returned promptly. Otherwise, it 
may be a better option to check for new potentially relevant 
information and/or update the underlying model every n interactions. 

5 STARSPIRE 
StarSPIRE (Semantic Translation of Actions for Retrieval – Spatial 
Paradigm for Information Retrieval and Exploration) is a visual 
analytics tool prototype that implements multi-model semantic 
interaction techniques using two models (relevancy and display 
layout) [Figure 4]. StarSPIRE is built upon the foundation of 
ForceSPIRE, a semantic interaction visual analytics tool prototype 
for exploring unstructured text documents [12]. StarSPIRE and 
ForceSPIRE share a flexible spatial workspace (driven by a modified 
force-directed layout [12, 15]) and several semantic interactions. 
This system extends upon previous work to integrate relevance-
based retrieval and layout models, provides richer visual encodings, 
and adds to the semantic interactions leveraged. StarSPIRE 
dynamically adjusts how many data points are displayed by using 
heuristic-based relevance metrics. While its predecessor was 
designed specifically for use on large, high-resolution displays, the 
push-and-pull nature of displayed data in StarSPIRE has made it 
usable regardless of display size. 

5.1 Visual Encodings 
Within the spatial workspace, document nodes are visually encoded 
to relate their relevance to the user’s high dimensional understanding 
of the data [Figure 5]. Node size and saturation are encoded to reflect 
how closely a document matches the entities the user has deemed 
important. Node size and saturation are calculated by summing all of 
the entity weights in a document, ranking these values, and sorting 
them into quartiles. Quartiles were chosen instead of absolute 

ranking to optimize the node drawing process, minimizing the 
number of calculations and changes required with each user 
interaction. This was done to promote a quick interaction-feedback 
loop. 

These encodings give the illusion of a third dimension in the 
workspace where more important documents are in the foreground 
while less important documents fade into the background. However, 
unlike a true three-dimensional layout, document nodes cannot 
overlap each other, preventing occlusion. 

Additionally, StarSPIRE provides visual cues for navigating the 
workspace. Node color is used to indicate search term matches. 
Instead of showing all links between all documents, StarSPIRE 
restricts the edges shown to those connected to the selected node. 
Entities shared between documents are labelled on the edge, but are 
restricted to the top four entities, determined by their importance 
weights. All nodes are labelled with their document’s titles in order 
to allow for easier navigation in the space and to allow users to track 
a specific node’s movement throughout the space. Each node’s 
outline color is used to denote its read or unread status in order to 
allow analysts to see which documents they have read and closed. 
Within each document, search terms are identified and the text color 
is changed to allow the terms to stand out for easier identification. 
These encodings were identified and/or adjusted through an informal 
usability requirements analysis of StarSPIRE. 

5.2 Interactions 
StarSPIRE begins with a blank spatial workspace with documents 
loaded into memory. The user then executes a search to add 
documents to the workspace. This grants the user flexibility for 
where to start their analysis and mimics an analyst executing a 
database search to return a set of documents with which to begin 
their analysis. Granted, this supported use case assumes that the 
analyst is conducting a directed sensemaking task. This does not 
support the use case of being handed a stack of documents and told 
to “see if there is anything suspicious.” In this scenario, other 
methods, such as topic modelling, would be useful to aid the analyst 
in finding a starting point for their analysis. 

Documents are laid out using a modified force-directed layout 
where the spring attractive force between two nodes is determined by 
summing the weights of shared entities. Thus, the layout’s input is 
the displayed data for the current timestep and the weight vector for 
the previous timestep. The weight vector is determined by 
interpreting user interactions [Table 2]. The set of displayed 
documents is determined from a document relevance model. 

Users can then interact with the data to incrementally formalize 
their understanding of the data. These interactions include moving 
nodes, pinning nodes to create spatial landmarks, resizing nodes, 
collapsing open nodes, annotating documents, searching for terms, 
highlighting terms, and linking document nodes. With each 
interaction, the display layout updates to allow nodes to move about 
the space to reflect the new entity-weighting scheme. Additionally, 
the visual encodings are updated to reflect document relevance based 
on the entity weights. 

Fig. 4. Implemented version of the multi-model semantic interaction visualization pipeline. In StarSPIRE, a relevance model and a display layout 
model are used. With each user interaction, the perceived importance of terms updates, changing the spatial and the working set of data is 
modified. The dashed black arrow indicates typical force-directed layout interactions that do not influence the userʼs interest model parameters. 
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Moving nodes and pinning nodes have no impact on the entity 
weighting scheme, but serve to rearrange the spatial workspace to 
reflect the user’s organizational schema. These are traditional force-
directed layout actions. 

Resizing a document to make it larger or smaller increases or 
decreases the weight value of each entity contained in the document, 
respectively. This is interpreted as relevance feedback and the 
system updates the working set of documents appropriately.  

Minimizing a document decreases the weight values of all 
entities contained in the document. Closing a document also 
decreases the weight values of all entities contained in the document, 
but at a higher magnitude than minimization [Figure 6]. 

Resizing a node to make it larger or smaller increases or 
decreases the weight values of all entities contained in the document, 
respectively. Resizing a node is accomplished by selecting a node 
and using the mouse scroll button to alter the node’s size. If a node is 
made larger, the system queries for additional similar documents. If a 
node is made smaller, the system tracks this feedback to be less 
likely to retrieve similar documents in the future. 

Annotating a document adds the [new] terms to the typed-in 
document and increases their weight values. The system retrieves 
documents matching the entities contained in the annotation. 

Searching for a term increases that term’s associated weight and 
retrieves documents matching the search term. This action returns 
more matching documents than other semantic interactions because 
it is an explicit request for related information. 

Highlighting a term or phrase increases the weight values of all 
highlighted entities and retrieves documents matching the 
highlighted entities. 

Overlapping documents increases the weight values of all 
common entities between the two overlapping documents and 
retrieves documents matching the shared entities between the 
documents. 

With each semantic interaction, the spatial layout updates and, if 
necessary, the system queries for new relevant documents and adds 

them, if any, to the workspace. Because StarSPIRE is designed to 
test the usability of semantic interactions operating across multiple 
models (and theoretically vastly different levels of data scale), we 
have thus far only tested the system on smaller datasets (e.g. on the 
order of 10,000 documents). As a result, StarSPIRE is capable of 
updating all models (display layout and information retrieval) with 
each user interaction as well as storing the entire dataset in memory. 
This will likely not be the case with much larger datasets. Future 
implementations will likely require database support or leverage 
cloud-based architectures. 

5.3 Relevance-Based Retrieval 
We selected a simple modified linear search algorithm to serve as the 
relevance model. When StarSPIRE increases an entity’s importance, 
it searches the backend database for additional documents to add to 
the workspace and adds the top n search results that exceed a 
relevance metric [Figure 7]. Currently, a maximum of twenty 
documents are added if the user executes a search and a maximum of 
eight documents are added from all other semantic interactions that 
result in a request for more information. Additional data can be 
obtained, if available, by repeating the interaction. This allows for 
progressive disclosure of information to keep too much information 
being added to the display at one time, which could overwhelm the 
analyst. The spatial layout then updates to accommodate these new 
data points. 

The current relevancy-based threshold allows for a variable 
number of documents in the working set of data. By not restricting 
the number of documents that can be present on the screen, the user 
is capable of maintaining as much information as inferred to be 
relevant to their sensemaking task. In the future, this could be 
updated to allow for additional heuristics, such as the number of 
opened/closed document nodes, node proximity to the center of the 
workspace, or how recently a document has been added to the 
workspace. 

Fig. 5. StarSPIRE workspace, which is a node-link diagram connected by shared entities using a modified force-directed layout. Nodes represent 
closed documents, which are color-coded based on search terms. Node size and saturation encode document relevance, based on how well the 
document matches the user-driven entity-weighting scheme. Node outline color denotes read/unread status (white for unread, black for read). All 
nodes are labelled with their file names for easy tracking of documents as they move in the workspace. Edges radiate from the selected document 
node, labelled with shared entities. 
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Table 2. StarSPIREʼs interpretation of semantic interactions in terms of 
the parametric updates to the model of the userʼs interests. 

Interaction Model Parameter Effect 
Resize document Scale all weights of terms in the document 
Minimize document Down-weight terms by 25% 
Close document Down-weight terms by or 40%, remove from 

working set 
Resize node Scale all weights of terms in the document 
Annotation Up-weight terms by a constant, add terms to 

model 
Search Up-weight term by a constant, add terms to 

model, adjust relevance threshold as needed 
Highlight Up-weight terms by a constant 
Overlap documents Up-weight shared terms by a constant 

 
New information can be added to the display implicitly or 

explicitly. The user can explicitly query for new documents by 
executing a search. Implicit queries are constructed using the 
interpreted semantic interactions [Table 2]. These implicit queries are 
typically more complex than the explicit queries, which include 
single terms. The implicit queries often include multiple terms and 
their associated relative importance. 

Documents that fall below the current relevance threshold are 
removed from the display, leaving the user with a working set of 
documents that match the user’s interests in the data. 

This retrieval process was chosen in order to support incremental 
changes to the information on the display as well as real-time 
interaction. If data were not merely added (or subtracted) from the 
displayed documents, the user could be presented with an entirely 
new set of displayed data, which could be disorienting. Thus, we 
prefer an incremental approach. 

The psuedocode for StarSPIRE’s retrieval algorithm is as 
follows: 

 
retrieveDocuments(docsDisp, docsHid, Wt, Wt-1, limit): 

//docsDisp = list of documents displayed 
//docsHid = list of documents not displayed 
// Wt, Wt-1 = array of entity weights at timestep t and t-1, 

respectively 
//limit = maximum documents to add to the display 

1. docMatches = empty list of documents 
2. ΔW[] = Wt – Wt-1 
3. for i = 1 : docsHid.length 
4.      weight = 0 
5.      for j = 1 : ΔW.length 
6.           if(docsHid[i].hasEntity(Wt.entity) 
7.                weight += ΔW[j] 
8.      if(weight > 0) 
9.           docMatches.add(docsHid[i]) 

10. for i = 1 : docMatches.length 
11.      docMatches[i].relevance =  

sum(e.weight for each Entity e in docMatches[i] 
12. for i = 1 : docDisp.length 
13.      docDisp[i].relevance =  

sum(e.weight for each Entity e in docDisp[i]) 
14. docsRanked[] = Sort(docMatches) based on relevance 
15. for i = 1 : min(limit, docsRanked.length) 
16.      docsDisp.add(docsRanked[i]) 
17.      docsHid.remove(docsRanked[i]) 
18. docsDisp[] = Sort(docsDisp) based on relevance 
19. for i = 1 : docsDisp.length 
20.      docsDisp[i].rank = i 
21. return docsDisp 

 
In the algorithm, the positive changes in entity weights are 

identified to determine which terms have increased in importance 
and should be used to identify new documents to add to the 
workspace. Step two computes the dot product between the entire 

backend dataset with the change in entity weights vector (ΔW), 
which results in a single number for each document. To optimize 
performance, we discard all documents whose value is zero, because 
they do not contain any entities whose weights were increased within 
the past timestep. This results in the set of documents docMatches, 
which are candidates for addition to the workspace. The weights of 
entities contained in these candidate documents are summed using 
the current weighting scheme to obtain a score that reflects how well 
each document matches what the user has deemed important in the 
dataset thus far. These values are then sorted and the top n 
documents are added to the list of documents included in the spatial 
workspace at timestep t and removed from the set of hidden 
documents (i.e. documents in the dataset not included in the spatial 
workspace). This results in the set of documents displayed at the next 
timestep, t+1. The algorithm returns this modified set of documents 
(which could be the same as the previous timestep if no documents 
are chosen to be added). The updated rank of each displayed 
document is stored as an attribute of each document. This rank 
information allows the system to apply appropriate visual encodings 
to denote how closely documents match the user-imparted entity 
importance values. 

 The documents returned from the information retrieval algorithm 
are then used as input, along with the current weighting scheme at 
timestep t, to the modified force-directed layout to determine the 
two-dimensional layout of the data points for timestep t+1. 

We chose to select candidate documents first instead of applying 
the weight vector across all documents in the dataset in order to 
provide an incremental update to the displayed data. If we had 
applied W(t) to the entire dataset, it is possible that the displayed 
data would be much different in each iteration.  

Similarly, selecting candidate documents and eliminating all 
documents which do not contain any of the newly increased entities 
allows us to optimize the retrieval process. This is crucial for 
maintaining a quick interaction-feedback loop. 

The linear nature of this algorithm prevents it from scaling to 
much larger document collections. More advanced retrieval methods, 
either running in real time or as a background process, could be 
substituted in order to handle larger amounts of data. 

6 USAGE SCENARIO 
To demonstrate StarSPIRE’s functionality, we used the VAST 

2007 Challenge Dataset (“Blue Iguanodon”) [17]. Because 
StarSPIRE is currently designed to operate on unstructured text 
documents only, we omitted all images and spreadsheets from the 
dataset, resulting in approximately 1,500 text files. Blog entries that 
were included in the data were converted into text files, one for each 
blog entry. Preliminary entity extraction was done on the dataset.  

The challenge task is an open-ended sensemaking task to 
investigate “unexpected activities concerning wildlife law 
enforcement, endangered species issues, and ecoterrorism” [17]. We 
present the following usage scenario to demonstrate how StarSPIRE 
can leverage the MSI technique. 

The user began with a search for “chinchilla.” This was 
unsurprising, because the dataset contained a directory titled 
“Chinchillas.” She read through several documents, arranging them 
in the display based on document similarity. The user then began 
highlighting information regarding chinchillas, which branched into 
additional endangered species. This loosely structured analysis 
continued until the user read a document concerning a musical artist 
owning an extremely large number of exotic animals whose actions 
did not seem to match his words regarding animal conservation. The 
analyst denoted this as suspicious and began investigating it further. 
This investigation was driven through highlighting the artist’s name 
and the name of his animal sanctuary, which imported many 
documents onto the display, some of which had a large node size. 
The analyst opened the largest new nodes first. 

[Figure 8] shows the evolution of the user’s spatial organization 
schemas through the sensemaking task. Clusters of documents were 
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moved around the screen and a mixture of visual encodings and 
document proximity motivated the choice of documents to 
investigate next. Furthermore, it can be seen that the user initially 
executed two searches to obtain some initial documents, but then 
opted for other multi-scale semantic interaction techniques to obtain 
new documents (e.g. highlighting, linking documents – denoted by 
the purple bars, and annotating documents). Document annotations 
were used to record hypotheses and insights (e.g. “r’Bert is r’Bear?” 
and “r’Bear might have monkeypox”). In the later stages of analysis, 
searches were used primarily to label the space, serving as reminders 
of which documents concerns which persons or topics. However, 
they were also used to ensure that important information or 
documents had not been overlooked. 

Once the user identified suspicious activity regarding a large 
exotic animal reservation, it became apparent that many documents 
were interconnected via several subplots. As her understanding of 
the dataset evolved, so did her spatial representation. For example, 
two documents that were initially considered “not quite relevant, but 
interesting enough to not minimize” concerning an outbreak of a 
disease were initially placed in the upper right hand corner of the 
display. After realizing that the owner of the large exotic animal 
sanctuary had contracted the same disease, she moved the two 
documents down next to the exotic animal sanctuary documents. 

Highlights, document annotations, and document linking were 
primarily used to obtain new documents in the workspace. Searches 
were executed to check for additional information on important 

persons, but also used to label the spatial workspace. After 
approximately ninety minutes of analyzing the data, the user 
concluded that she had a sufficient understanding of the plot and 
subplots in the data. 

The user’s results were compared with the known ground truth 
solution. The user correctly identified four out of five subplots in the 
data. The use added 145 documents to the workspace, which is 10% 
of the actual dataset. 47 documents were opened and 33 remained 
open at the conclusion of the sensemaking session. The user made 
eight searches, four document annotations, and 21 highlights. 45 
documents were added through searches, whereas the remaining 100 
documents were added through other multi-scale semantic 
interactions (e.g. highlight, annotate, document proximity). 

Out of 26 documents relevant to the final solution, the user had 
added 18 of them to the workspace. Six of these 18 documents were 
added through an explicit search, while twelve were added through 
implicit multi-scale semantic interactions. 13% (6/45) of documents 
added through explicit searches were relevant to the solution, and 
12% (12/100) of documents added through implicit searches were 
relevant to the solution. Therefore, the documents that originated 
from multi-scale semantic interactions were similar in quality to 
those that originated from explicit searches from the user. 

Out of approximately 1,500 documents, 47 were read. Thus, the 
analyst was able to construct 80% (four out of five subplots) of the 
solution while only reading 3.13% of the documents in the dataset. 
While the results of this usage scenario appear promising, further 

Fig. 7. Multi-model semantic interaction in StarSPIRE. Left: The user explicitly searches for documents containing the word “chinchilla.” 
Documents matching this search term are added to the display and arranged. Middle: The user selects a document to read. To prevent 
occlusion, nodes are pushed aside but still maintain their relationships to other documents as much as possible. Right: The user highlights the 
entity “PETA.” Eight new documents are retrieved and added to the display. Documents rearrange due to the shift in weighting scheme – 
documents that contain “chinchilla” and “PETA” (as well as other shared terms) are brought closer together in the middle, documents that 
contain only “chinchilla” are pushed to the top and left, and documents that only contain “PETA” are pushed to the bottom and right. 

Fig. 6. Multi-model semantic interaction in StarSPIRE: Document relevance feedback. Left: The user explicitly searches for documents 
containing the term “POK.” Documents matching this search term are added to the display and arranged using a “near = similar” metaphor. 
Middle: The user selects the outlying document, opens it, then closes the document to remove it from the workspace. Right: The system 
decreases the entity weights of the terms contained in the deleted document. The system updates the visual encodings to reflect this relevancy 
feedback and updates the display layout. 
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work is required to evaluate the performance of MSI techniques as 
compared to existing SI techniques. 

7 DISCUSSION 

7.1 Comparison to Existing Techniques 
Most similar to our system prototype is ForceSPIRE [10], which 

implements semantic interaction techniques and allows the 
exploration of small text datasets. However, ForceSPIRE operates 
using a single model (display layout), which hinders data analysis 

compared to StarSPIRE. 
Data loading and processing takes much longer in ForceSPIRE  

(several minutes) than in StarSPIRE (several seconds) for 
moderately sized datasets on the order of 1,000 to 1,500 documents. 
Most of this delay is due to computing the force-directed layout and 
the relationship between all documents. Because StarSPIRE stores 
most of the data and only displays a smaller working set of 
documents, processing is much faster. For these same reasons, the 
interaction-feedback loop is slower in ForceSPIRE. Thus, the large 
scale model relieves much of the computational overhead from the 
small scale model. 

Furthermore, we have extended the visual encodings to give a 
richer overview of the displayed documents and have enabled the 
users to provide positive and negative relevance feedback, which is 
reflected in a separate model. 

Instead of comparing these tools directly, we will design a 
comparative user study using StarSPIRE with MSI techniques 
enabled and with only SI techniques enabled. Users will be presented 
with a subset of the data on the screen, alleviating ForceSPIRE’s 
inability to display more than a few hundred documents on the 
screen. With the SI-only condition, they will be required to explicitly 
request additional information through either written queries or 
query-by-example (e.g. “show me more like this document”). This 
will allow for a comparison between the two techniques in regard to 
how information is retrieved and interacted with in the workspace. 

Many existing systems transform user interactions into model 
feedback to drive a spatial layout. Dis-function [6] enables users to 
inject feedback into a spatialization model by repositioning points, 
allowing the system to incrementally update the distance function 
driving the low-dimensional projection of high-dimensional data. 
Similarly, Visual to Parametric Interaction [20] infers analytic 
reasoning from users moving and/or highlighting data points in a 
spatial projection of high-dimensional data. These interactions are 
converted into parametric updates to change the spatial layout. Work 
in observation-level interaction [14] also allows document 
repositioning to drive an underlying spatialization model. However, 
all of these techniques are limited to using a single model, whereas 
our technique leverages multiple models that are capable of 
operating at different levels of data scale. 

7.2 Document Selection Models 
The model used here is only one example of many possible 

models for document selection. We chose this approach in order to 
focus on the interactions within StarSPIRE and their mappings to the 
parameters driving the retrieval results. However, this approach is 
not practical for extremely large datasets with large numbers of 
entities. The relevancy-based retrieval algorithm used in StarSPIRE 
runs in O(nm) time where n is the number of documents and m is the 
number of entities, due to the initial search process. We have 
optimized the algorithm to perform the sorting operations on a subset 
of the possible documents to improve this runtime. However, the 
worst-case scenario is that all, or nearly all, documents in the dataset 
match an entity that has been upweighted (e.g. “the”). Even in 
average and best case scenarios, this algorithm is not an ideal choice 
for scaling to extremely large datasets. Parallelization is one option 
for speeding up the algorithm, but we also wish to consider 
alternative models for retrieval. 

Future implementations of multi-model semantic interaction 
should consider the streaming and ever-growing nature of data. 
Accordingly, streaming or a mixture of dynamic and static models 
could be employed. Further methods of handling this type and 
amount of data could take a multi-threaded or parallel approach. 

In addition to optimizations for algorithm performance, different 
models could be leveraged at the display layout and information 
retrieval levels. Different models naturally lend themselves to 
different interactions. For example, moving data points or pinning 
them as spatial landmarks could be interpreted by algorithms such as 
Latent Semantic Indexing [9], Principal Component Analysis [23], or 
Multi-Dimensional Scaling [31], among others, to adjust the lower-

Fig. 8. Organizational schema evolution throughout the use case. Top: 
Early analysis into chinchillas and endangered species that are 
growing in popularity with a seemingly unrelated outbreak of 
monkeypox. Middle: Intermediate analysis that has linked chinchillas, 
the monkeypox outbreak, and a rapper keeping a suspicious exotic 
animal sanctuary. Bottom: Final spatial layout showing the 
relationships between multiple subplots in the dataset, along with 
searches that have been executed to label the space as well as 
hypotheses entered as annotations to documents. 
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dimensional space of all of the documents to create a representation 
that better fits the user’s high-dimensional understanding of the data, 
thus producing subjectively better search results. 

7.3 Multi-Model Visualization Pipeline 
The flexibility of generalized multi-model semantic interaction 

enables researchers to explore many alternative models, methods of 
interpreting interactions, and mappings to analytical reasoning.  

There are multiple options for routing of interactions to models. 
For some interactions (e.g. changing data point distances), it may be 
appropriate to propagate the interaction to each underlying model up 
the levels of scale. However, for other interactions (e.g. giving 
relevance feedback on a document), it may be more appropriate to 
send this feedback directly to a specific model. Further complicating 
matters, the same interaction may have a different intent based on 
context. For example, a user may construct a cluster of documents. 
The clustered documents could be important and relevant to the user, 
or the user could be grouping them in order to filter out other 
irrelevant documents from the main display area. In this example, it 
is possible that this distinction could be captured by the proximity of 
the cluster to the periphery or center of the display.  Investigating 
alternative approaches to enabling users to naturally express these 
intents within the visual interactions remains an open research 
question. 

It may be appropriate to maintain several models for each level of 
data scale and dynamically adapt which is used based on which 
model is able to best incorporate the user’s feedback. For example, 
having multiple display layout models allows the system to choose 
the one that converges the best or has the lowest deviation from the 
user’s feedback. We plan on investigating how the notion of 
competing models changes the performance of the system, both 
qualitatively and quantitatively. Maintaining multiple models for 
accomplishing a single task could result in a better approximation of 
the high-dimensional data, and we will investigate methods for 
providing visual feedback to inform users of these switches.  

Due to the runtime of these algorithms and the time required to 
invert the models to compute a new representation, it may not be 
practical to apply interactive feedback to every model at each 
interaction. Slower models could be told to invert and execute after a 
certain number of interactions and instructed to run in the 
background. However, display-level models should be updated with 
each interaction in order to provide the user with immediate 
feedback. Therefore, whichever models are chosen to drive the 
spatial layout should execute quickly. 

7.4 Limitations 
StarSPIRE is currently designed for text analysis. Multimedia 

cannot currently be incorporated in the tool. Future implementations 
could overcome this limitation by using metadata and user-
designated tags for multimedia files. Although StarSPIRE is not 
equipped to handle generic high-dimensional data, multi-model 
semantic interaction techniques can be applied across data types. As 
multi-model semantic interaction is an extension of observation-level 
interaction for high-dimensional data [32], these systems (ex. [6, 20]) 
are suitable for extension to multi-model semantic interaction. 

We have applied multi-model semantic interaction techniques to 
sensemaking tasks, but have not attempted other analytical tasks, 
such as social network analysis. Additionally, we have not yet 
empirically evaluated if users understand and accept the mappings of 
interactions to model feedback. This will be conducted in future 
work. 

StarSPIRE has currently been tested on over 10,000 text 
documents that had an entity extractor run on them, resulting in over 
20,000 distinct entities. Total loading time was under one minute and 
interactions could be completed in close to real time (queries are 
typically executed in under three seconds). Due to the nature of the 
retrieval model, the execution time depends largely on the size of the 
set of candidate documents, which need to be sorted and ranked, then 

compared against a relevance threshold. This problem is exacerbated 
by document collections with extremely large numbers of entities. 
Therefore, broad searches tend to have slower response times. This 
limitation could be overcome by implementing more sophisticated 
and optimized algorithms. StarSPIRE is not equipped to handle 
much larger datasets (e.g. on the order of 100,000 documents and 
higher). Moving to a database or cloud-based architecture and 
implementing different algorithms could overcome this limitation. 

8 CONCLUSION 
In this paper, we have introduced the concept of multi-model 

semantic interaction, which harnesses user interactions to manipulate 
underlying models. We have presented an instantiation of this 
technique that operates across multiple levels of data scale. Along 
with this technique, we introduced a generalized visualization 
pipeline for semantic interaction using multiple models. We have 
shown an example implementation of multi-model semantic 
interaction techniques through the visual analytics tool prototype, 
StarSPIRE. Using this prototype, we demonstrated the functionality 
of multi-model semantic interaction techniques. Finally, we 
concluded with a discussion of multi-model semantic interaction 
techniques. 

We plan on conducting a comparative user study using 
StarSPIRE to observe the differences between explicitly constructed 
queries and the addition of implicitly constructed queries. This will 
serve to compare multi-model semantic interaction with semantic 
interaction. The study will use one of the VAST Challenge datasets 
in order to quantitatively evaluate user performance. 

Future work includes investigating additional multi-model 
semantic interaction techniques, visual encodings, and models. 
Additionally, we plan on creating a visual representation of the 
dataset to grant users an overview of the document content. We wish 
to practically apply multi-model semantic interaction techniques to 
much larger datasets, including streaming data. This will likely 
require implementing additional algorithms and cloud-based 
architectures. 

We hope that multi-model semantic interaction will serve as a 
usable means of interacting with multiple models for data analytics. 
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