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Abstract—We present a method for evaluating visualizations using both tasks and exploration, and demonstrate this method in
a study of spatiotemporal network designs for a visual analytics system. The method is well suited for studying visual analytics
applications in which users perform both targeted data searches and analyses of broader patterns. In such applications, an effective
visualization design is one that helps users complete tasks accurately and efficiently, and supports hypothesis generation during
open-ended exploration. To evaluate both of these aims in a single study, we developed an approach called layered insight- and task-
based evaluation (LITE) that interposes several prompts for observations about the data model between sequences of predefined
search tasks. We demonstrate the evaluation method in a user study of four network visualizations for spatiotemporal data in a
visual analytics application. Results include findings that might have been difficult to obtain in a single experiment using a different
methodology. For example, with one dataset we studied, we found that on average participants were faster on search tasks using
a force-directed layout than using our other designs; at the same time, participants found this design least helpful in understanding
the data. Our contributions include a novel evaluation method that combines well-defined tasks with exploration and observation, an
evaluation of network visualization designs for spatiotemporal visual analytics, and guidelines for using this evaluation method.

Index Terms—Evaluation methodology, insight-based evaluation, visual analytics, network visualization, information visualization.

1 INTRODUCTION

Evaluating visual analytics systems is challenging because users need
to know that the system supports both basic information retrieval tasks
as well as complex reasoning and exploration. A system that is good
for looking up specific data is not always good for building insights
and testing hypotheses, and vice versa. At the same time, practical ap-
plications frequently demand that the same tool be used for both pur-
poses. Despite visual analytics’ focus on reasoning, many studies eval-
uate tools using task-based protocols that measure only user perfor-
mance on low-level tasks. By contrast, insight-based methodologies
aim to measure how well visualizations promote insight generation,
using characteristics like the domain value of observations users make
about the data model. However, these methodologies can be difficult
to follow, and it is not clear how best to capture insight characteristics
alongside users’ task performance, as is relevant in visual analytics
applications that support both targeted data searches and analysis of
broader patterns.

Here we present a method for evaluating visualizations using both
tasks and exploration, and demonstrate this method in a study of four
spatiotemporal network designs for a visual analytics system. We call
the approach layered insight- and task-based evaluation (LITE) be-
cause it interposes several prompts for observations about the data
model between sequences of predefined search tasks. Our evaluation
demonstrates the feasibility of a lightweight, within-subjects insight-
based evaluation. We reflect on the relationship between users’ task
performance with a visualization and how well it promotes insights in
assessing the best choice among four visualization designs for a spa-
tiotemporal visual analytics system.

Our contributions here include: 1) a novel method of evaluating
both task performance and insight characteristics of visualizations in
a single study using a mixed design; 2) a demonstration of the method
in a case study of four network-layout designs for spatiotemporal vi-
sual analytics, and 3) guidelines for using the evaluation method in
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future studies. While our case study focuses on a spatiotemporal vi-
sual analytics application where both exploration and routine search
tasks might be performed, the evaluation method can be applied to
other visualization types.

2 RELATED WORK

Many evaluation methods have been demonstrated in empirical vi-
sualization research. Carpendale reviews evaluation approaches for
information visualization [10] and describes challenges outlined in
earlier works by Plaisant [22] and others. Another overview of ap-
proaches aimed at visual analytics appears in the VisMaster consor-
tium book [15]. The biennial BELIV workshop (Beyond Time and
Errors: Novel Evaluation Methods for Visualization) has significantly
added to the discussion of challenges in visualization evaluation. The
research contributions in its proceedings have focused on developing
more effective evaluation methods that avoid the pitfalls of traditional
methodologies. Taxonomies of past studies have also been helpful in
constructing guidelines for evaluating new visualizations [16, 13, 20].

In the remainder of this section, we describe methods relevant to a
combined insight- and task-based evaluation, as well as to evaluations
of information layouts for visual analytics.

2.1 Task-based Evaluations
Controlled laboratory studies with predefined tasks are commonplace
in visualization research. In general, these studies aim to produce mea-
surable outputs that are comparable among participants, design con-
ditions, or other independent variables. Accuracy and response time
for tasks are typical measures, with accuracy sometimes being used
to filter task executions from the response-time analysis (e.g., [12]).
In such studies the objective is to demonstrate differences in task effi-
ciency. The evaluation approach described here collects user efficiency
and accuracy measures for tasks selected using a typology covering
the basic analysis questions one might ask of a spatiotemporal data
model. These tasks represent analysis pieces that could be composed
into a larger-scale, exploratory analysis. We acknowledge that there
are tradeoffs in the realism of tasks performed in order to gain precise,
quantitative results [16]. Our study uses non-experts rather than pro-
fessional data analysts, and tasks have been abstracted to remove any
dependence on domain knowledge.

2.2 Insight-based Evaluations
Unlike task-based evaluation methods, insight-based methodologies
are motivated by the realization that the goal of a visualization tool is
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usually to enhance understanding of the underlying data, not to im-
prove task accuracy and efficiency [9, 17, 23]. Saraiya et al. presented
an insight-based approach for evaluating bioinformatics tools [26] and
later used it in a longitudinal study where insights were developed
over months [27]. Characteristics of insights include the number of
distinct data observations, the time needed to reach each insight, the
domain value of each insight, breadth-versus-depth labeling, and other
characteristics. Quantifying some of these attributes requires domain
experts to participate as response coders in the evaluation. Even with
this scheme, eliminating all subjectivity from the evaluation is diffi-
cult; for instance, the cutoff between a depth insight and a breadth
insight might vary depending on the expert coder.

Other studies have applied similar methods to measure insight char-
acteristics between visualization conditions. It is worth noting that
insight characteristics have been adapted from those proposed by
Saraiya et al. in order to fit the hypotheses of other studies. For in-
stance, O’Brien et al. made an insight-based evaluation of two tools
for visualizing genomic rearrangements using a reduced set of in-
sight characteristics [19]: researchers counted the instances of three
categories of insights as well as the total number of insights, total
“hypothesis-driving” insights, and the insights per minute of analy-
sis. Our method also uses a simplified set of insight characteristics
and collects these with a single study protocol alongside task perfor-
mance.

North et al. found that the results of an insight-based evaluation can
both support and contradict findings of studies using benchmark tasks
with the same visualizations [18]. It is possible that evaluators who
use only one of these methods will miss details visible using the other.
We aim to combine the two in a single, practical protocol while mini-
mizing interactions or biases in the results. Our method differs in time
scale from longitudinal studies in visualization, such as multidimen-
sional in-depth long-term case studies (MILCS) [30]. Unlike previous
insight-based evaluations, the evaluation we present uses non-expert
participants. Using non-experts lets us achieve a larger sample size
than would otherwise be possible, enabling us to test hypotheses about
task performance and quantified insight characteristics more precisely.
There are drawbacks in using non-experts; e.g., asking participants for
initial analysis questions might be unreliable; however, even if do-
main experts were used, they would not necessarily have experience
with the analysis tools in the study, as in [26]. Furthermore, we ex-
pect that combining tasks with exploration provides extra training and
motivation for participants. Previous studies [11] and models [25, 24]
have demonstrated how predefined tasks enhance exploratory learning
of computer interfaces. While the insights themselves are likely to
be less deep for non-experts than for domain experts, it is possible to
compare insight-promoting characteristics between visualizations us-
ing non-experts.

2.3 Spatiotemporal Tasks and Visual Designs

An indispensable part of designing a visual analytics tool is consid-
ering the set of analytical tasks to be supported. The visualizations
evaluated here are grounded in previous work on visual analysis of
spatiotemporal data. In [21], Peuquet distinguished three components
in spatiotemporal data and queries about those components: space
(where), time (when), and objects (what). Users can complete queries
when two of the three components are known and the other is the
search target. Andrienko et al., drawing on Peuquet’s work as well as
other task typologies, proposed a typology for visual analytical tasks
with the dimensions of search target, search level, and cognitive oper-
ation [4]. Others [6, 2, 28] have proposed more general task typologies
that also apply to spatiotemporal data.

Many visual analytics designs for spatiotemporal data exist, as re-
viewed comprehensively in [4]. Notably, maps and timelines, the most
common representations for spatial and temporal data, have been com-
bined in previous design studies. Slingsby et al. showed that these rep-
resentations can be configured as levels of a tree map in order to sup-
port different queries [31]. More recently, Andrienko and Andrienko
proposed the cartographic map display and time-series display as the
two visualization components in their visual analytics framework for
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Fig. 1: Example ordering of k visualization conditions and n task
types in LITE. After each block of tasks with a visualization (labeled
T1 . . .Tn), the participant is prompted for exploration and observation
about the data (labeled O1 . . .Ok). Task ordering within a visualization
condition is randomized using a balanced Latin square, and visual-
ization orders are randomized between participants using a balanced
Latin square. In our case study, k = 4 and n = 4.

spatiotemporal analysis [3].

3 LAYERED INSIGHT- AND TASK-BASED EVALUATION

We propose combining a lightweight insight-based evaluation adapted
from Saraiya et al. [26] with a traditional task-based evaluation. We
call this approach layered insight- and task-based evaluation, or LITE,
because it interposes several prompts for observations about the data
model between sequences of predefined search tasks or queries.

3.1 Motivation
Two main goals for this method are: 1) to measure the accuracy and
efficiency of common tasks alongside insight characteristics without
compromising task measurements; and 2) to measure insight charac-
teristics while sidestepping some of the difficulties of performing the
insight-based method, such as:

D1 Users must be intrinsically motivated to look for insights during
a session that might be open-ended.

D2 Training new users on visualization interfaces can be challeng-
ing. Training can fatigue users and make them try less hard in
the actual study [26].

D3 After the user study, coding observations for measurable insight
characteristics like domain value is difficult and requires domain
experts.

Even when these difficulties are managed in an insight-based evalua-
tion, challenges arise when performing such an evaluation separately
from a task-based evaluation so as to collect measures of both task
performance and insight generation. If these studies use different par-
ticipants it can be difficult to draw conclusions about relationships be-
tween tasks and exploration. Individual differences or differing sample
sizes must be considered.

Performing separate task- and insight-based evaluations back to
back creates other challenges. If a full insight-based evaluation is per-
formed before a task-based evaluation, open-ended exploration may
fatigue users to the point that they perform poorly on the follow-up
study. If a full task-based evaluation is performed before an insight-
based evaluation, users may have less motivation to explore the data
model: they might satisfice and report only shallow insights in order
to finish the study.

3.2 Steps
The initial stages in a LITE evaluation are similar to those in previ-
ous insight-based methodologies. As a study session proceeds, sets of
predefined tasks are interleaved with exploration periods letting par-
ticipants find and record insights. The steps are:

1. Background about the dataset is provided, then participants are
prompted for initial analysis questions. Alternatively, initial
analysis questions can be provided by the evaluators.

2. Participants are then trained on each task type for different visu-
alization conditions. Participants are not trained on exploration,
as in [26].

3. When the study begins, participants complete blocks of tasks
with each visualization condition.
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Time
 Range
Start Date: Sat, 30 Apr 2011 00:00:00 GMT

End Date: Sun, 22 May 2011 00:00:00 GMT

Location
 Selection
Northville Riverside Downtown Uptown Plainville

Smogtown Westside Cornertown Southville Lakeside

Suburbia Eastside Villa

Select all Deselect all

Task
George Herman tweeted about an outdoor hot tub on May 15. Where was that tweet

published?

Force-directed (F)Time
 Range
Start Date: Sat, 30 Apr 2011 00:00:00 GMT

End Date: Sun, 22 May 2011 00:00:00 GMT

Location
 Selection
Northville Riverside Downtown Uptown Plainville

Smogtown Westside Cornertown Southville Lakeside

Suburbia Eastside Villa

Select all Deselect all

Northville

Riverside

Downtown

Uptown

Plainville

Smogtown

Westside

Cornertown

Southville

Lakeside

Suburbia

Eastside

Villa

Task
George Herman tweeted on April 30 from Downtown. Summarize the content of that tweet in

a few words.

Submit

Space-situated (SS)

Apr 30 May 01 May 02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 May 21

Apr 30 May 01 May 02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 May 21

Time-situated (TS)Time
 Range
Start Date: Sat, 30 Apr 2011 00:00:00 GMT

End Date: Sun, 22 May 2011 00:00:00 GMT

Location
 Selection
Northville Riverside Downtown Uptown Plainville

Smogtown Westside Cornertown Southville Lakeside

Suburbia Eastside Villa

Select all Deselect all

Apr 30 May 01 May 02 May 03 May 04 May 05 May 06 May 07 May 08 May 09 May 10 May 11 May 12 May 13 May 14 May 15 May 16 May 17 May 18 May 19 May 20 May 21

Northville

Riverside

Downtown

Uptown

Plainville

Smogtown

Westside

Cornertown

Southville

Lakeside

Suburbia

Eastside

Villa

Task
Someone tweeted about the Arcade Fire in Cornertown on May 6. Who published that tweet?

Submit

Time- and space-situated (TSS)

Fig. 2: Four visualization designs were evaluated using a layered insight- and task-based evaluation: force-directed (F), time-situated (TS),
space-situated (SS), and time- and space-situated (TSS). These visualizations depict microblog messages and their authors, and the designs
differ in how attributes of the nodes, like timestamp and location, are used to lay out the diagram.

4. After each block, participants explore the data freely using the
visualization and record insights. Each exploration period is
open-ended. In order to keep participants from skipping these
periods, a minimum time requirement may be enforced before
they can move to the next visualization and block of tasks. Fig-
ure 1 shows an example ordering of tasks and visualization con-
ditions in which each participant completes each task type once
using each visualization.

5. Finally, a post-test questionnaire or interview may be used after
all tasks and exploration periods are finished. Subjective feed-
back about the insightfulness of visualizations may be used to
explore findings from insight characteristics measured during ex-
ploration periods.

The proposed method addresses some difficulties of the traditional
insight-based evaluation listed earlier. Study participants in LITE
may feel more motivated because the session makes concrete progress
through task completions rather than asking for open-ended explo-
ration alone (D1). Tasks may improve participants’ confidence with
the visualizations and provide extra experience that promotes explo-
ration and insight generation (D2). In our case study, we developed
and used a scoring system without domain experts to code the value
of insights (D3), but this system is not specific to LITE and could be
applied to other insight-based methods.

4 CASE STUDY

We evaluated four node-link diagram layout designs for an interactive
visual analytics system that uses a graph-based model of real-world
entities, like documents and people. We chose node-link diagrams
here because of their flexibility in representing arbitrary node and edge
types in the model. That said, we expect most nodes to have spatiotem-
poral attributes that describe when and where events happen. Based
on this, we developed designs that differ in how location and time at-
tributes are used to lay out nodes with these attributes in the diagram.
Specifically, we looked at ways to project location and time attributes
onto the drawing-plane axes. This is conceptually similar to previous
work in which generic quantitative attributes are mapped onto axes
to guide node placement [7]. In this study, we restricted ourselves to
designing a layout for a single display. We considered four distinct
node-link diagram layouts for the network model:

F Force-directed: A force-directed layout plots marks based on a
physical simulation and has the effect of reducing visual density
in the node-link diagram. Force-directed layouts are widely used
and well understood. We consider this a control condition in
an evaluation of visualization designs that position nodes using
spatial or temporal attributes.

SS Space-situated: The space-situated layout overlays document
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marks on a map of the city based on documents’ geotags. Nodes
without geotags are placed at the top of the visualization and dis-
tributed evenly.

TS Time-situated: The time-situated layout aligns document marks
with a horizontal timeline. The vertical positions of document
marks are determined using a force-directed layout to reduce
visual density in the diagram. Nodes without timestamps are
placed at the top of the visualization and distributed evenly.

TSS Time- and space-situated: The time- and space-situated layout
plots document marks according to both geotags and timestamps.
Nodes without geotags and timestamps are placed at the top of
the visualization and distributed evenly. In TSS the horizontal
axis is a timeline, as in TS. In our prototype, the vertical axis
is divided into categories corresponding to neighborhoods in the
data model. Categories on the vertical axis can be ordered in dif-
ferent ways, for instance from top to bottom based on an ordering
of neighborhood locations from northernmost to southernmost.
In this case, boundaries between categories could reflect some
information about the geographic boundaries between neighbor-
hoods.

Figure 2 shows each of these layout designs. All visualizations were
prototyped using D3 [5] and JavaScript, and share some visual encod-
ings. The entity type of each node is double-encoded by shape and
color. Marks representing documents are blue squares and marks rep-
resenting people are gold diamonds; these two sorts of marks have
roughly the same size in the browser. A detailed description of each
node appears in a scrollable tooltip when the user hovers over the node.
For documents, this description includes the author, timestamp, loca-
tion, and content. In general, document content is limited to 140 char-
acters, since documents in our data model are microblog formats like
Twitter messages that enforce a content-length limit.

A simple aggregation scheme is built into each prototype so that
node marks that would otherwise overlap cannot become inaccessible
to the user. When marks of the same entity type overlap, both are re-
moved from the diagram and a single aggregated mark is added. Only
marks representing entities of the same type can be aggregated: thus,
documents can be aggregated only with other documents. Aggregated
marks retain the same entity-type encoding (shape and color) but are
distinguished by a red border and increased size. Because multiple
marks might overlap, the size of aggregated marks is used to encode
the number of individual entities it represents.

We considered several approaches to aggregating nodes in node-
link diagrams. A common approach is to aggregate a primary entity
node and nodes representing its attributes into a compound node [29,
8]. This approach does not work for our case, however, as the mapping
between two types of entities in our data model might be many-to-
many. In our prototypes, when a node is aggregated into a different
mark, each edge mark connected to that node is replaced by another
that is connected to the aggregated node. The underlying data model is
not changed by this process. Two nodes connected by an edge cannot
be aggregated together.

Hovering over a node mark highlights all edges connected to that
entity. For example, hovering over a person node highlights edges to
all document nodes connected to that person by an “authored-by” re-
lationship. Hovering over a document highlights the edge to its author
node. Highlighting is implemented by restyling edges from transpar-
ent gray to opaque red. A selection interaction is also included to al-
low persistent highlighting during user exploration. Users can toggle
selection on node marks by clicking them with the cursor.

5 EXPERIMENT DESIGN

After a small pilot study, we performed an experiment to evaluate a
set of hypotheses about task performance and insight characteristics
for participants using four visualization designs. A 2× (4×4) mixed
design was used to examine the independent variables of dataset size
between subjects, and visualization design and task type within sub-
jects.

5.1 Hypotheses
In general, we expect that layouts that position nodes by projecting
their attributes onto the axes will improve task performance and pro-
mote insight generation. Below are specific hypotheses about the ef-
fect of independent variables on task performance (H1, H2), subjec-
tive ratings from participants (H3, H4, H5), and insight characteristics
(H6–H10):

H1 For all tasks, participants will be fastest using TSS, which uses
both spatial and temporal attributes to lay out nodes. For all
tasks, participants will be the slowest using F.

H2 Visualization type will have a significant effect on task accuracy.
H3 Participants will report feeling most confident in their task re-

sponses when using TSS and least confident when using F.
H4 Participants will report that TSS is the most helpful visualization

type for understanding the data and that F is the least insightful
in this way.

H5 Participants will report that TSS is the easiest visualization type
to use and that F is the hardest.

H6 Total domain value for observation prompts will be highest for
the TSS condition and least for the F condition.

H7 Visualization type will have an effect on the total domain value
during observation prompts.

H8 Dataset size will have an effect on both total time and total do-
main value during observation prompts. Both characteristics will
be higher in the large dataset than in the small one.

H9 The order of observation prompts will have an effect on the total
domain value during those prompts.

H10 The order of observation prompts will have an effect on the total
response time during those prompts.

5.2 Visualization Types
The four visualization types in our study are described in Section 4 and
shown in Figure 2. In addition to the visualization layouts, the user in-
terface included controls to filter document nodes by publication time
and location. Data-filter controls are common in visual analytics appli-
cations, and it is important that the test interface match realistic usage
scenarios. The time filter is a slider that can be moved on both ends
in increments of one day. Node and edge marks related to documents
published outside the chosen range are invisible. The location filter
contains checkboxes that correspond to all neighborhood locations in
the data model and can be toggled to filter marks related to documents
published outside selected neighborhoods. This filter also provides
“Select all” and “Deselect all” interactions.

5.3 Datasets
Dataset size is an important consideration in designing network visu-
alizations. In general, larger data models add complexity and visual
density that can expose scalability problems in different designs. For
our experiment, two graph-based datasets of different sizes were com-
piled using data from the 2011 VAST Challenge Mini-Challenge #1
(MC1) [1]. Both are subsets of a synthetic dataset containing times-
tamped, geotagged microblog messages from residents in a city expe-
riencing a health epidemic.

• Small – includes 10 person nodes and 139 document nodes.
There are 139 “authored by” edges that connect documents to
their authors. Documents were published from 13 different
neighborhoods over a span of 22 days.

• Large – includes 74 person nodes and 999 document nodes.
There are 999 “authored by” edges that connect documents to
their authors. Documents were published from 13 different
neighborhoods, and some lacked a neighborhood-specific loca-
tion (i.e., location is “Vastopolis”, the city name). They were
published over a span of 22 days.

Both datasets were created by sampling the Challenges full-size
dataset, and both contain evidence of the health epidemic in the mi-
croblogs. These ‘evidence’ microblogs appear in similar proportions
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1

full_s_7 small 34.279 42.054 25.215 28.962 26.254 38.376 19.806 30.822 15.509 39.685 18.531 20.194 24.515
full_s_8 small 32.822 31.274 84.545 28.807 31.34 61.85 26.574 37.62 28.873 57.534 44.913 74.552 56.375
full_s_9 small 48.347 59.934 45.293 75.923 66.279 47.543 64.096 69.471 38.276 40.306 31.405 48.435 38.058

Small

who what when where

F 37.2825 50.3620833333333 46.6304545454545 59.8351666666667

SS 43.83425 52.851 57.5525 52.0983333333333

TS 33.2825454545455 49.2225833333333 44.289 57.0925454545455

TSS 44.0710833333333 54.7571666666667 56.7226363636364 57.8056666666667

errF 3.18767384671492 5.47470172766923 4.64660004414496 10.9216760534112

errSS 5.60513865982219 4.79333326611034 9.87355498633505 5.72246622682666

errTS 5.91535179982581 5.92167286517045 6.2116389141675 7.22444117419049

errTSS 4.74331473961676 5.84528265619449 11.3255285939435 7.6308283907642

Large

who what when where

F 39.7536666666667 39.9223636363636 49.4011 79.1321666666667

SS 41.7609166666667 44.904 100.811333333333 99.864

TS 48.9315 41.5832727272727 76.0651818181818 62.3282727272727

TSS 53.2513333333333 40.0636363636364 75.2884545454545 75.7342727272727

errF 4.42215412737533 5.40898291442994 5.29006368886257 14.8905769185472

errSS 5.58784433751315 2.9844536071672 32.6123075494823 34.2024931358679

errTS 6.80451199405753 3.44042289443638 11.868871729956 6.45343847895468

errTSS 12.1148796035322 2.19415316558566 13.826764839755 19.3349480033581
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Fig. 3: Response times grouped by task type for each visualization type. Each participant completed each task type with each visualization type.
Columns show the mean of total time spent (sec) across participants (n=12 in both (a) and (b) dataset groups) and error bars show ±1 standard
error. Response times corresponding to incorrect task answers are not shown.

in both datasets. We note that, while larger data models are common
in real analysis scenarios, we limited the size in order to keep tasks
and exploration manageable for non-expert participants during single
study sessions.

5.4 Tasks
Based on the spatiotemporal network data model, tasks were selected
using a simple typology based on when, where, what, and who queries.
This task typology is similar to ones used in previous studies [4, 28].
We note that in the training and task instructions, the word “tweet” was
used as a colloquialism for a microblog message. No data or services
from Twitter were used in the study. The four task types are:

• who + when + where→ what: Given a microblog’s author, date,
and location, summarize the content in a few words. For exam-
ple, “Cara Guthrie published a tweet in Plainville on May 20.
Summarize the content of that tweet in a few words.”

• what + who + when→ where: Given a brief summary of the mi-
croblog’s content, author, and date, find where it was published.
For example, “Angela Barnett published a tweet about stylish
watches on May 5. Where was that tweet published?”

• where + what + who → when: Given a microblog’s location, a
summary of its content, and its author, find when it was pub-
lished. For example, “Bradley Church published a tweet about
loss of appetite in Plainville. When was that tweet published?”

• when + where + what → who: Given a microblog’s date, loca-
tion, and a summary of its content, find its author. For example,
“Someone published a tweet about Sham Wow in Uptown on May
11. Who is the author of that tweet?”

An answer key for all task instances was created in order to score
responses as accurate or inaccurate.

5.4.1 Prompts for Exploration and Observation
After each block of tasks, participants were prompted to explore the
data using the visualization and record observations relevant to the
epidemic in the data model. The instructions are:

Explore the data using the visualization, then write down
your observations about the data below. You should record
observations about the data that are relevant to the follow-
ing questions: “Do you find evidence in the data of an out-
break?”; “If so, when and where do you think it started?
And how might the infection be transmitted, and is it con-
tained?” Please number each observation.

These specific questions were taken from the instructions for MC1 [1];
they are the questions MC1 participants were asked to answer by ex-
ploring and observing a superset of the data we used. We provided
these as replacements for the initial analysis questions asked as part of
the insight-based methodology [26].

In response to findings from our pilot study, we added a minimum
time for the observation prompt before each participant could move
ahead to the next block of visualization tasks. During this time, par-
ticipants could not access the “Next” button. When an onscreen timer
showing the amount of time remaining (sec) reached 0, the “Next” but-
ton became available. At that point, participants could either continue
exploring and making observations about the data or move onto the
next block of tasks.

5.5 Participants
We recruited 24 participants for the study, 10 men and 14 women. Par-
ticipants were primarily graduate and undergraduate students whose
ages ranged from 19 to 30 years (M=24.4, SD=2.6). We assigned par-
ticipants randomly to the small and large dataset groups so that each
had 12 people. Participant prior experience with node-link diagrams
was similar in both groups. In follow-up questions after the exper-
iment, about half the participants in each group (5 out of 12 in the
small dataset and 7 out of 12 in the large dataset) responded that they
‘somewhat agree’ to ‘strongly agree’ with the statement “I have expe-
rience using visualizations of nodes and edges,” using a 7-point Likert
scale. The remaining participants responded that they ‘somewhat dis-
agree’ to ‘strongly disagree’ with that statement. No participants gave
a neutral response.

5.6 Protocol
Participants were given background information about the data model
and were trained for approximately 20 minutes on the four visualiza-
tion designs, including the time and location filter controls in the user
interface. During this training, participants performed practice trials
for each task type. With the informed consent of participants, all tasks
and exploration following the training were video-recorded for later
analysis.

Each participant in the study performed four blocks of tasks, one
per visualization. Each block contained one instance of each of the
four task types. Participants performed different task instances be-
tween blocks. For each task, responses were recorded and timed for
later analysis. At the end of each task block, participants explored
the data using the visualization for at least three minutes and recorded
insights by typing into an on-screen text field. In total, each partici-
pant performed 16 tasks and four observation prompts. This part of
the study session lasted 40–60 minutes on average. Figure 1 shows an
example workflow for this part of the study. Ordering effects for both
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visualization types and task types are mitigated by counterbalancing.
The order of visualization types is chosen between participants using
a balanced Latin square, as is the order of task types within each visu-
alization block for each person.

Participants were asked in a post-test questionnaire to report their
preferred visualization type for each of the four task types. They were
also asked to rate each visualization type for ease of use, confidence in
task responses, and how well the visualization helped them understand
what is happening in the data model. Ratings were on a 7-point Lik-
ert scale from “strongly disagree” to “strongly agree” for statements
corresponding to these properties.

5.6.1 Insight Characteristics

Two insight characteristics were measured during each observation
prompt in the study: total time spent and total domain value of ob-
servations. Total time spent had a lower bound because of the three-
minute minimum time before participants could move to the next task
block, as described in Section 5.4.1.

Scoring Domain Value We developed a simple scoring system to
assess the domain value of individual observations. From a four-user
pilot study, we identified two main parts of each observation about the
data model: a general claim about the data (e.g., “It looks like the
outbreak started in Downtown”), and 0 or more specific data points
that are evidence for the observation (e.g., “John Doe tweeted about
feeling sick – from Downtown on April 19”). In the scoring system,
each recorded observation has a starting score based on whether or
not it makes a new claim that was not previously reported by the user
during an earlier observation prompt. Because participants explore
the same data model repeatedly, it is important not to double-count
observations that were arrived at earlier. For our purposes, a claim is
a general hypothesis, question, or remark about the data model that is
potentially synthesized from multiple observations.

On top of the starting score, points are added to observations that
include specific references to data points in the model as evidence for
the claim. The total points awarded during an observation prompt is
equal to the sum of scores of individual observations i in the set of
observations I:

base(i) =

{
0 if i makes no new claim
2 if i makes new claim

(1)

bonus(i) =


+0 if i includes no new, supporting data points
+1 if 1 new, supporting data point in i
+n if n new, supporting data points in i

(2)

score(i) = base(i)+bonus(i) (3)

total(I) = ∑
i∈I

score(i) (4)

In this system, we expect individual observations to range from 2 (e.g.,
a new claim provided without details) to 5 points (e.g., a new claim
with a few supporting data points). Previous insight-based evaluations
scored domain values for individual insights in a similar range and also
awarded points to insights based on depth [19, 26].

Two authors of this paper independently coded all insights from the
experiment using this system. Both coders were doctoral candidates
studying visualization and had experience with the datasets and visual-
ization designs. Scores for the total domain value of each observation
prompt from both coders were averaged for later analyses.

6 RESULTS

All statistical tests described in this section were performed using
SPSS. The results include support for some hypotheses from Sec-
tion 5.1 but not others: we accept H4, H9, and H10; we find partial
support for H3, H5, and H8; and we reject H1, H2, H6, and H7.

1

subject data size F SS TS TSS

full_m_0 m 1 3 1 2

full_m_1 m 1 6 4 5

full_m_10 m 1 4 2 5

full_m_11 m 2 5 5 5

full_m_2 m 2 3 6 7

full_m_3 m 2 6 6

full_m_4 m 3 5 6 6

full_m_5 m 1 5 5 7

full_m_6 m 2 7 3 5

full_m_7 m 2 4 6 7

full_m_8 m 1 7 5 4

full_m_9 m 1 6 5 5

full_s_0 s 2 6 7 6

full_s_1 s 5 7 6 3

full_s_10 s 5 7 7 7

full_s_11 s 2 7 3 6

full_s_2 s 1 6 6 6

full_s_3 s 2 6 5 6

full_s_4 s 5 6 5 6

full_s_5 s 3 6 6 5

full_s_6 s 6 2 5 5

full_s_7 s 2 5 6 7

full_s_8 s 4 6 6 4

full_s_9 s 2 4 4 4

small5dataset s 3.25 5.66666666666667 5.5 5.41666666666667

large5dataset m 1.58333333333333 5 4.5 5.33333333333333

stder<s s 0.4787135538781690.4143877070053740.3370999312316210.357989616688202

stder<m m 0.1929960485281360.4264014327112210.48461168459756 0.414387707005374
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Fig. 4: Subjective ratings of visualization insightfulness on a 7-point
Likert scale collected on the follow-up questionnaire. Columns show
the mean response (n=12 in both groups) and error bars show±1 stan-
dard error.

6.1 Task Performance
Overall, participants were very accurate during the study: accuracy
across all participants and tasks is 96% and did not differ significantly
between visualization types. Therefore, we reject hypothesis H2.

We used a mixed ANOVA to analyze how the response time varied
across visualization types and tasks. Average response times for all
task and visualization types are shown in Figure 3. We performed
the ANOVA analysis on the log-transformed time data, as is typical in
response-time analysis. Times corresponding to incorrect task answers
were replaced with the mean response time for all correct responses
under the same condition. Otherwise, the repeated measures analysis
would exclude data from correct tasks by participants who gave one or
more incorrect answer.

The results showed that task type had a main effect on response
time (p < .001, F3,50.743 = 13.109, with Greenhouse-Geisser correc-
tion). Pairwise comparisons were made using Bonferroni-corrected
p-values by SPSS. These comparisons showed that participants were
significantly faster on the who task than on the when (p < .001) and
where (p < .001) tasks. Participants were also significantly faster on
the what than on the where task (p = .025).

We did not find support for hypothesis H1 and reject it. In fact, as
shown in Figure 3, we found that the mean response time using TSS
is greater than the mean response time using F for most task types in
both the small and large dataset size conditions. We did not observe
a main effect of visualization type on response time (p = .147, F3,66 =
1.848) or an effect of dataset size on response time (p = .179, F1,22 =
1.931).

6.2 Insight Characteristics
Insight characteristics measured during the study are shown in Fig-
ure 6 and Figure 7. We first analyzed the insight scores together
with time spent on each insight task (using a log-transformation on
times) with a multivariate mixed ANOVA with visualization type as
the within-subject independent variable. The results showed that vi-
sualization type did not have a main effect on either the insight value
score or the exploration time. We did not find evidence for H6 or H7
and reject both. We found partial support for H8: dataset size had
a main effect on time (p = .041, F1,22 = 4.702), but not on the total
domain values of insights (F1,22 = 0.092, n.s.). There was also an in-
teraction effect between visualization type and dataset size on the total
domain values (p = .035, F3,66 = 3.031) but not on time (F3,66 = 0.347,
n.s.).

We then performed a similar analysis with presentation order of the
visualizations as the independent variable. This time we observed a
strong main effect of presentation order on both the total domain value
scores of insights (p < .001, F3,66 = 7.488) and the exploration time (p
< .001, F3,38.256 = 11.621, with Greenhouse-Geisser correction). We
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1

Table 1

subject data size followup'task'
how

followup'task'
what

followup'task'
when

followup'task'
where

full_m_0 m TSS TSS TS SS

full_m_1 m SS SS SS TSS

full_m_10 m TSS TSS TSS SS

full_m_11 m SS SS SS SS

full_m_2 m SS SS TS TSS

full_m_3 m TS TSS SS TS

full_m_4 m TSS SS TS SS

full_m_5 m TSS TSS TSS TSS

full_m_6 m TSS TSS TSS TSS

full_m_7 m SS TSS TSS TS

full_m_8 m TSS TSS SS TS

full_m_9 m SS SS TSS TS

full_s_0 s TS TS SS SS

full_s_1 s TS force TS SS

full_s_10 s TSS TSS SS TS

full_s_11 s force force TS SS

full_s_2 s TSS SS TSS SS

full_s_3 s TSS TSS TSS SS

full_s_4 s TSS TSS SS TSS

full_s_5 s TSS TSS SS force

full_s_6 s TSS TSS TSS TSS

full_s_7 s TSS TSS TSS TSS

full_s_8 s force TSS TS SS

full_s_9 s TSS TSS TSS TSS

How

small dataset large dataset

force 2 0

TS 2 1

SS 0 5

TSS 8 6

What

small dataset large dataset

force 2 0

TS 1 0

SS 1 5

TSS 8 7

When

small dataset large dataset

force 0 0

TS 3 3

SS 4 4

TSS 5 5

Where

small dataset large dataset

force 1 0

TS 1 4

SS 6 4

TSS 4 4
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Fig. 5: Preferences for visualization type based on task type. From left to right, the tasks shown are who, what, where, and when queries.
Columns show the number of participants (n=12 in both groups) who preferred each visualization for the task.

thus found support for H9 and H10. Participants spent significantly
more time on the visualization that was presented first than on the fol-
lowing three (p = .033, p = .011, and p = .002 respectively), and also
spent more time on the second visualization than on the last one (p =
.02). Participants also had higher insight scores on the first visualiza-
tion than on the third (p < .001) or the last (p = .005) visualization.

6.3 Subjective Ratings
Figure 5 shows the numbers of participants who preferred each visual-
ization type for each task type. No participants who interacted with the
large dataset preferred the force visualization for any task. TSS was
preferred by more participants than any other visualization for both
datasets, except on the where task. In that task, participants using the
small dataset preferred SS more than TSS, and participants using the
large dataset preferred TS, SS, and TSS in equal numbers.

We analyzed the subjective Likert-scale ratings of the four visual-
izations using a multivariate mixed ANOVA. Visualization type had
strong main effects on all three measures (understanding: p < .001,
F3,51 = 18.374; ease of use: p < .001, F3,51 = 9.117; confidence:
p < .001, F3,38.955 = 10.386, with Greenhouse-Geisser correction).
Dataset size had a main effect on understanding (p = .049, F1,17 =
4.512) and ease of use (p = .014, F1,17 = 7.557), but not on confidence
(F1,17 = 0.705, n.s.).

Pairwise comparisons of the visualization types showed that par-
ticipants found the force visualization the least useful in helping them
understand the dataset; on average F was rated significantly lower than
TS, SS, and TSS (p < .001 in all cases). TSS was rated as the most
helpful for understanding the data, although it was only significantly
higher than F. Thus, we find support for H4. F was rated as the most
difficult to use (lower than TS, p = .003; lower than SS, p = .004;
lower than TSS, p = .013). Participants rated SS easiest (not signif-
icantly higher than TS or TSS). Therefore, we found partial support
for H5. Participants also felt the least confident with the F (lower than
TS, p = .006; lower than SS, p = .001; lower than TSS, p = .007).
They were most confident with TS (not significantly higher than SS or
TSS). Therefore, we found partial support for H3. Pairwise compar-
isons for the two dataset sizes showed that participants generally felt
that they had a better understanding of the small dataset and also found
the visualizations easier to use with the smaller dataset.

6.4 What Is the Best Design?
We expected that visualization designs using spatiotemporal attributes
of nodes in the layout (SS, TS, and TSS) would have better task per-
formance than F, but this was not the case. A possible explanation is
that the process of using node positions along with guide marks on
axes (e.g., in TS and TSS) to solve search tasks is less efficient than
using the data filters for time and location. In fact, the features of
these spatiotemporal layouts might have distracted participants from
using filters as much as they did in the F layout. Task-execution videos
showed that most participants used filtering often, even with the spa-
tiotemporal layouts, so other factors may be involved. For instance,
participants might have taken extra time to verify their answers using
guide marks, and tasks in our typology might have been easy enough

that this verification step added time without significantly improving
accuracy.

The efficiency of filtering might also account for the significant dif-
ferences in average response time between task types. Overall, par-
ticipants were faster on who and what tasks, which gave both location
and time components in the task description. In these tasks, partici-
pants can use both location and time filters before inspecting any nodes
in the visualization. In the other tasks, participants had only enough
information to use one filter – location or time – based on the task
description.

Looking at task performance alongside user feedback, it is difficult
to choose a best layout for the data model studied. The same lay-
out with the fastest overall task performance (F) was also the one that
participants felt least confident with overall and found the hardest to
use overall. F was rated significantly less helpful in understanding the
data than the other types. In such cases, a visual analytics designer
must choose a layout by weighing competing objectives for the tool,
including efficient task performance and subjective user preferences
that might impact adoption rates and indicate insightfulness. When
task efficiency is prioritized, F is a good layout choice in a visual an-
alytics system with interactive, spatiotemporal data filtering. If we
prioritize user preferences and subjective feedback about usability and
insightfulness, SS or TSS might be a better layout.

7 DISCUSSION

Here we discuss what we learned about LITE through our case study
and present open challenges and guidelines for using the methodology.

7.1 Limitations
We set out to develop a practical visualization evaluation method
that combines components of task-based and insight-based evalua-
tions. In doing so, we attempted to explore and mitigate the inter-
actions or biases that North et al. warn about when combining these
approaches [18]. Other limitations exist as well.

A practical consideration in most user studies is the time needed to
run each participant, and LITE – like insight-based methods – has an
open-ended exploration component that makes it difficult to estimate
how long a single participant will take. In our case study, sessions
lasted from 30 to 90 minutes. This uncertainty must also be consid-
ered when designing the tasks and repetitions in the task-based por-
tion of LITE. Conducting a pilot study is a reasonable way to discover
whether the task portion is feasible alongside the insight component.
LITE studies with many tasks or visualization conditions might be pro-
hibitively lengthy for participants.

A second limitation that follows from splitting time between tasks
and exploration is related to the power of the results. The task-based
portion of a LITE study design might have fewer trials than a dedicated
task-based study design. Therefore, hypotheses could exist about task
performance that can be tested in a task-only study but not in a LITE
study.

Third, participants in a LITE study alternate between blocks of
tasks and exploration, and that context-switching might negatively im-
pact how people perform these activities. On the other hand, it is also
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1

size %me.force %me.SS %me.TS %me.TSS insight.force insight.SS insight.TS insight.TSS
medium 580.39 754.428 442.352 300.218 5 9 3 1
medium 249.41 476.894 281.404 203.905 5 9 3 0
medium 378.135 307.552 276.118 348.881 4 2 1 1
medium 319.377 258.063 664.349 422.815 6 10 7.5 3
medium 220.134 344.499 1239.418 485.704 2 3 9.5 6
medium 330.305 341.484 379.06 465.384 4.5 4.5 2.5 5
medium 571.03 696.108 716.589 409.265 8 9.5 15 1
medium 311.293 337.653 335.349 403.62 3.5 2 1 6
medium 672.107 413.626 275.44 969.285 4.5 5.5 1 9
medium 406.691 286.15 239.448 261.33 2 3.5 6.5 2
medium 245.14 235.212 808.236 250.407 9 5 11.5 1
medium 197.877 234.643 275.875 273.992 3 5 4 5
small 422.201 363.07 390.192 369.165 7 8.5 1.5 6.5
small 255.032 181.598 180.708 181.244 4.5 8.5 3 2
small 402.365 302.772 462.589 518.514 8 1 5.5 8
small 356.985 910.42 433.946 306.585 6 10 5 7
small 180.9 199.822 192.518 180.934 1.5 4 3 7
small 315.868 233.234 258.233 537.148 8 0.5 3.5 13
small 186.732 182.646 211.741 203.885 0 1 2 2
small 184.275 445.581 542.32 399.746 6 4 8 10.5
small 458.391 216.326 195.876 1581.08 0 1.5 0 3.5
small 255.545 185.079 182.078 186.726 7 5 2 4
small 193.677 237.178 661.472 181.37 4 2 4.5 2.5
small 181.439 186.474 186.59 204.724 3 5.5 3 5.5

Total time by vis type

F SS TS TSS

small dataset 282.784166666667 303.683333333333 324.85525 404.260083333333

large dataset 373.49075 390.526 494.469833333333 399.567166666667

s-stderr 30.1772837120888 60.1107794087405 48.2579265723518 113.584414544363

m-stderr 44.9759903891703 49.6094329892527 88.1981433441833 58.0511252164109
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Total domain value by vis type

F SS TS TSS

small dataset 4.58333333333333 4.29166666666667 3.41666666666667 5.95833333333333

large dataset 4.70833333333333 5.66666666666667 5.45833333333333 3.33333333333333

s-stderr 0.841250272036818 0.950395319131078 0.60875348712004 0.993269649168642

m-stderr 0.619928922286151 0.855758863420784 1.32496188243247 0.810287391340663
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Fig. 6: Insight characteristics organized by the visualization type given to participants, each of whom was prompted for observations once per
visualization type. The orderings of visualization types were counterbalanced across participants. Columns show the mean of total time spent
(sec) (a) and the mean of total domain value (b) across participants (n=12 in both groups) and error bars show ±1 standard error.
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(b) Total domain value of observations per prompt

Fig. 7: Insight characteristics organized by the order in which observation prompts were given to participants, each of whom was prompted
once per visualization type. The orderings of visualization types were counterbalanced across participants. Columns show the mean of total
time spent (sec) (a) and the mean of total domain value (b) across participants (n=12 in both groups) and error bars show ±1 standard error.

possible that these switches keep participants engaged and give them
a sense of making concrete progress, as mentioned in Section 3. Fur-
ther study is needed to understand how these context switches affect
analysis behaviors with visualizations.

Having evaluations of both insight characteristics and task perfor-
mance is useful for the visual analytics application in our case study;
the tool is intended both to promote insights about events and support
routine data queries. Other visualizations might be aimed at only one
of these purposes, and would be better evaluated using either bench-
mark tasks or an insight-based evaluation. Evaluators with both aims
could opt to run separate studies with those methods, which is more
time-consuming than running a single LITE study but might give more
powerful results. These tradeoffs should be considered carefully.

7.2 Lessons from the Case Study

We encountered a variety of choices and challenges during our study
that suggest guidelines for using the method.

7.2.1 Reinforcing Instructions for Different Portions of LITE

Some participants either did not understand the instructions or for-
got background information on the data provided during the training
period. For instance, one participant commented during her fourth ob-
servation prompt that the outbreak “Seems more over the place this
time”, even though participants were told that they would explore the
same data set multiple times using different visualizations. This de-
tail could be easy to forget since the network layouts changed between

blocks of tasks. Participants who investigated the small dataset made
no such observations, possibly because they were able to revisit and
recognize microblogs between visualization conditions.

Other participants answered the initial questions given in the
prompt directly rather than providing observations about the data that
confirm or disconfirm those questions. For instance, some participants
began their list of observations like “1. Yes. 2. ...”. In a few cases, ob-
servations appeared to be numbered according to the three questions
in the prompt (i.e., observations specifically for those questions, with
no more than three separate observations) rather than being numbered
by separate insights about any of the initial questions. We interpreted
comments like “yes” as a belief that the corresponding initial question
was true.

Guideline Be explicit about how participants should record in-
sights. Since participants switch between different types of responses
during the task and insight portions of the study, these instructions
should be reinforced.

7.2.2 Coder Agreement for Insights
Overall, the two coders were fairly consistent in applying the scoring
scheme to assess the domain value of insights for each prompt; their
scores were within 2 points of each other for 81 out of 96 prompts, or
84.4% of the time. The coding scores are positively correlated, with
Pearson’s r = 0.87. That said, the coders agreed exactly on a score
only in 36 of the 96 prompts, or 37.5% of the time. Evaluating the
scoring system in future studies could help improve the scoring rules
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and coder manual and therefore improve consistency in assessing the
domain-value insight characteristic. As far as we know, coder consis-
tency has not been explored in depth in the literature for insight-based
evaluations. In some cases, it is unclear whether multiple coders were
used to assign domain values, how well they agreed, how coding con-
flicts were resolved, and what expertise the coders had. We believe
that the practice of reporting details of the coding process will gener-
ally benefit the development and standardization of insight-based eval-
uation methodologies.

Guideline In the results of a LITE or insight-based evaluation,
provide information about the process of coding the domain value of
insights.

7.2.3 Reduced Set of Insight Characteristics

Our study measured a subset of insight characteristics adapted from
previous studies [26, 19]. Some insight characteristics are difficult to
measure using LITE. For instance, we did not measure the time needed
to reach each insight, which could be misleading in a within-subjects
design that lets participants analyze the same data model over multiple
iterations. Instead, the total time for exploration in each visualization
condition was used, as in [19].

We also found it difficult to count the number of individual insights
without using a think-aloud protocol. Our LITE case study used an
on-screen text field that lets participants record observations in a man-
ner similar to recording task responses. We relied on participants to
input observations as a numbered list, but participants had different
styles for doing this. One alternative is to guide users in constructing
insights and evidence through a user-interface feature. For instance,
Jianu and Laidlaw let users click nodes in a protein-signaling visual-
ization to construct visual hypotheses about potential pathways, rather
than having them provide unstructured text input [14]. Another possi-
ble solution that we did not test formally is using a think-aloud proto-
col during the insight portions of LITE.

We did not divide insights into categories or label them as breadth
versus depth. Instead, the scoring system for domain value distin-
guishes between claims and supporting evidence. In the datasets used
in this study, the range in the types of comments participants made was
small and hence we saw no need to impose categories. Distinguishing
between insights might be more practical with a dataset that contains
more initial questions or in a domain with complicated relationships
among data points, like systems biology.

Finally, providing the initial questions about the data model rather
than asking participants for their initial questions makes it possible that
participants had other unreported insights that seemed irrelevant to the
specific initial questions but ultimately showed evidence of insight.
Because the participants in our study were non-experts, it is a reason-
able assumption that the initial questions encapsulated most of what
they were able to analyze and observe. With domain experts as partic-
ipants, however, there might be questions worth analyzing that would
be difficult for us to predict and hard-code into the evaluation. In such
cases, starting the evaluation by gathering initial questions from par-
ticipants makes more sense.

Guideline Consider the complexity of the data and participant
expertise when choosing insight characteristics to measure. With a
non-expert study population, provide initial analysis questions rather
than requesting them from participants.

7.2.4 Task and Workflow Considerations

We faced several workflow-related considerations during the design of
the case study. First, there is a relationship among the training par-
ticipants get, the specific tasks they perform, and the types of insights
they are likely to report. It is possible that tasks or training direct users
toward certain types of exploration activities. We deliberately tried to
avoid this scenario in our case study by choosing low-level tasks that
were unlikely to lead to insights on their own. An alternative approach
used by North et al. is to give more complex tasks that can be classified
into the same categories as the insights, in order to directly compare

the activities that each visualization supports and promotes [18]. How-
ever, in that study, task performance and insights were measured us-
ing two separate experiments with different participants, and ‘insight-
ful’ tasks could significantly interact with exploration and insights in
a within-subjects design like LITE.

Second, we recognized that the results in LITE would be impossi-
ble to interpret correctly if the order of visualization conditions was not
counterbalanced. Because the same data is explored by each partici-
pant repeatedly with different visualizations, an ordering effect on the
measured insight characteristics should be expected. In our case study,
we found evidence that participants spent more time and reported more
valuable observations during the earlier observation prompts than dur-
ing later ones (see Figure 7). Counterbalancing the orderings of visu-
alization conditions, as we did in the case study, can mitigate the effect
of order on the results.

Finally, based on our experience in our pilot study, which let par-
ticipants effectively skip the exploration portion of LITE, we decided
to require in our case study a minimum time during each observation
prompt. This seemed to motivate participants to explore the data; we
did not find that participants sat idly while the clock counted down,
or that they ended their exploration as soon as the minimum time was
finished. Participants were given as much time as needed to record and
explore observations, so this approach does not affect the results as it
would in an insight-based study with fixed length. That said, other
ways to motivate participants during the insight portion of LITE might
be more effective than a time requirement.

Guideline In LITE, choose low-level tasks that will not steer par-
ticipants toward insights, and be sure to counterbalance the ordering
of visualizations.

8 CONCLUSION

We present and demonstrate a method for evaluating visualizations
called layered insight- and task-based evaluation (LITE) that com-
bines predefined tasks and exploration. The method, which measures
both task performance and insight characteristics, was applied in a case
study of four different designs for a spatiotemporal network visualiza-
tion in a visual analytics system. The results of our case study helped
us assess which design best fit different objectives for the visual an-
alytics system, including optimizing for task efficiency or promoting
insights.

We also identified several guidelines for using LITE based on the
study.

• Choose low-level tasks that are components of realistic analysis
scenarios but will not steer participants toward insights.

• Counterbalance the ordering of visualizations to mitigate order-
ing effects in the insight component of LITE.

• Consider the complexity of the data and participant expertise
when choosing insight characteristics to measure.

• Report details of the process of coding insights: who are the
coders, how well did they agree, and how were disagreements
resolved into one score?

Opportunities exist to address challenges we encountered using LITE.
We are interested in better understanding how to run lightweight,
insight-based evaluations of visualizations using the non-experts who
are often recruited for task-based visualization studies. This work is
a step toward more diverse evaluations of visualization tools and ones
that evaluate multiple objectives for tools in a controlled setting.
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