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ABSTRACT

This paper focuses on the integration of a family of visual ana-
lytics techniques for analyzing high-dimensional, multivariate net-
work data that features spatial and temporal information, network
connections, and a variety of other categorical and numerical data
types. Such data types are commonly encountered in transporta-
tion, shipping, and logistics industries. Due to the scale and com-
plexity of the data, it is essential to integrate techniques for data
analysis, visualization, and exploration. We present new visual rep-
resentations, Petal and Thread, to effectively present many-to-many
network data including multi-attribute vectors. In addition, we de-
ploy an information-theoretic model for anomaly detection across
varying dimensions, displaying highlighted anomalies in a visually
consistent manner, as well as supporting a managed process of ex-
ploration. Lastly, we evaluate the proposed methodology through
data exploration and an empirical study.

Index Terms: I.3.6 [Computer Graphics]: Methodology and
Techniques—Interaction techniques; I.3.8 [Computer Graphics]:
Applications—Visual Analytics

1 INTRODUCTION

The recent trend of increasing size, complexity, and variety in
datasets (e.g., spatial, temporal, quantitative, qualitative, network
data) makes analysis and decisions from these data more challeng-
ing, often called the big data problem [24, 34, 40]. One very chal-
lenging type of big data is multivariate network data, especially
when there are multivariate values for both nodes and links. For ex-
ample, transportation, shipping, logistics, commerce, trading, elec-
tricity and communication industries [8, 46] have many connected
operational locations where multiple variables describe each loca-
tion’s operations. With flight delay network data, various multivari-
ate operational aspects are considered simultaneously: types of de-
lay, patterns based on airport location, trends in time, and relation-
ships among the airports. To reduce the analysts’ information over-
load and to enable effective planning, analysis and decision mak-
ing, an interactive visual exploration and analysis environment is
needed as traditional machine learning and big data analytics alone
can be insufficient [10].

While various systems and techniques for network visualization
have been proposed [22], few support analyzing both multivariate
network data (e.g., [43] and [28]) and map-based spatial network
data (e.g., [19] and [8]). There still remains a gap in effective mul-
tivariate spatial network data exploration and analysis to efficiently
answer challenging questions such as the following: What are the
patterns in multivariate variables on a node or among node-node
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pairs? Are the patterns relevant to specific regions and times? Is
there any seasonality in the patterns? Can we verify the patterns on
a map? Which network nodes and links could be anomalous?

In this work, we fill this gap by integrating a family of vi-
sual analytics techniques for exploring and analyzing such com-
plex data. We employ multiple linked views [33] (see Fig. 1), two
new multivariate visualization techniques, petals and threads, and
an information-theoretic analytical backend engine for aggregate-
level and detail-level network analysis.

Petals and threads efficiently present a simplified representation
of many-to-many networks where multi-attribute vectors represent
the size of attributes in different directions. Specifically, petals rep-
resent an aggregated summary view of directional data (Fig. 3) and
threads encode multiple variables of links (Fig. 2). An information-
theoretic model provides our analytical engine the ability to high-
light anomalies in the data. The anomaly detection can be dynami-
cally configured based on new contextual requirements that usually
result from user-generated hypotheses stimulated from visualiza-
tion and exploration of data. The analytical method provides the
visualization with additional warning signals and enables users to
prioritize their exploration strategy.

The contributions of our work in the multivariate spatiotemporal
network visualization and analysis domain are 1) designing petals
and threads for high-dimensional multivariate network link analy-
sis, 2) evaluating petals and threads with a user study, 3) designing
and implementing a visual analytics system using multiple coordi-
nated views, 4) integrating an information-theoretic anomaly detec-
tion method in the interactive visualization analysis process, and 5)
exploring complex data (e.g., flight delay network) to illustrate the
use and potential of our designs in the multiple-coordinated views.

Our system can be applied to exploration of any multivariate
spatiotemporal, network link data generated in transportation, ship-
ping, logistics, commerce, trading, and communication industries
(e.g., AT&T communication network data [8] and electric power
grid data [46]).

2 RELATED WORK

While the research topics in network visualization are as numer-
ous as the visualizations themselves [22, 38], in this work, we
consider network visualization techniques and tools that are per-
tinent to multivariate geospatial network data. For multivariate net-
work visualization research, Wattenberg [43] has designed Pivot-
Graph, a software tool focusing on the relationships between node
attributes and connections of multivariate graphs on a grid layout.
Ploceus [28] enables multi-dimensional and multi-level network-
based visual analysis on tabular data while Honeycomb [42] fo-
cuses on scalability (e.g., millions of connections) using a matrix
representation that is also incorporated in our matrix view. Shnei-
derman et al. [38] visualize networks by semantic substrates and
Selassie et al. [36] present an edge bundling technique for directed
networks.

For geospatial network visualization, Guo [19] has developed
an integrated, interactive visualization framework that visualizes
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Figure 1: Our system consists of multiple coordinated and linked views: (A) Calendar view, (B) Clock view, (C) Line graph view, (D) Statistics,
(E) Legend view for displaying types of delays, (F) Geographical view, (G) Matrix view, (H) Legend view for delay type and time, (I) Node filter,
(J) Pattern on itinerary view, (K) Time and aggregation filter, and (L) Twitter tag cloud view. In the (H) legend, the darker the red, the longer the
average delay is. A route from Dallas (DFW) to Portland (PDX) is specified in (F), and the top 20 airports in terms of delays are visualized in (G)
for explanation. In (G-3), the red links have the highest level of Z-scores, while the purple links have the second largest level of Z-scores.

major flow structures and multivariate relations at the same time.
SeeNet [8] visualizes geospatial network data in a communication
industry; however, its visualization focuses on univariate data. In
contrast to the previous work, our system allows users to analyze all
combinations of spatial, temporal, multivariate, and network char-
acteristics simultaneously. Herman et al. [22] surveyed other net-
work visualization techniques beyond our paper’s scope.

In order to visualize multivariate data, and to display the maxi-
mum amount of data relative to the available screen space, a pixel-
based visualization was developed by Keim et al. [23]. In the pixel-
based visualization, each data attribute is assigned to a pixel, and
a predefined color map is used to shade the pixel to represent the
range of the data attribute. Thus, the amount of information in the
visualization is theoretically limited only by the resolution of the
screen. Borgo et al. [9] present how the usability of the pixel-
based visualization varies across different tasks and block resolu-
tions while Ko et al. [25] demonstrate the effectiveness of pixel-
based visualization in the task of analyzing corporate competitive
advantages. Unlike the pixel displays, the matrix displays assign
fewer nodes on both axes of a matrix, and the relational attributes
of two nodes are visualized in a link location where the two nodes
meet. Matrix displays have been widely used for network visual-
ization due to their effectiveness in providing an overview of the
connections in dense networks [14, 16, 21]. Our system utilizes
both pixel and network displays, not only to visualize multivariate
data (e.g., airports–airlines), but also to describe the network (e.g.,
airports–airports). We use the term “link” for matrix displays that
corresponds to “a pixel” in the pixel displays. Heatmaps present
attributes through different shadings of rectangular tiles in a data
matrix [45]. We use the heatmap shading approach in the calendar
representation [44] that is incorporated in our system.

To help users visually explore multivariate data, many systems
have been developed in research and commercial areas [47] (e.g.,
Spotfire [6], QlikView [4], and Tableau [5]). Common among these
systems is that they make extensive use of interactive techniques for
brushing, linking, zooming, and filtering to refine the user’s queries.

Of the systems, Tableau [5], which has become popular due to its
flexible operation, allows analysts to easily access and effectively
analyze their data [47]. Although multivariate and time-series data
analysis is possible in the tool, comparison among multivariate,
spatial-temporal, and network-based attributes with geographical
components is not well supported by Tableau. In our system, all
attributes and characteristics in the data are incorporated and visu-
alized using multiple linked views for simultaneous comparisons.
For visualizing multivariate data, Duffy et al. [13] use a glyph en-
coding some 20 variables while Scheepens et al. [35] focus on a
method for reducing visual clutter and occlusion among glyphs.

Lee and Ziang [27] provide an overview of using information-
theoretical measures for anomaly detection, including entropy, con-
ditional entropy, information gain, and information cost. A number
of case studies are also provided in the domain of network secu-
rity. Chandola et al. provided a comprehensive survey on methods
for anomaly detection [11]. Arackaparambil et al. [7] use informa-
tion theory to monitor network streams for anomalies in network
traffic, and to explore the challenges of providing a scalable imple-
mentation using a distributed approach to computing entropy and
conditional entropy. Kopylova et al. [26] investigate the use of mu-
tual information in network traffic anomaly detection using Rényi
entropy rather than the traditional Shannon entropy measure.

3 MULTIVARIATE NETWORK VISUALIZATION

To effectively reveal as many aspects of the data characteristics as
possible, we explore the data in a series of linked visualizations.
Fig. 1illustrates how our system provides comprehensive multivari-
ate network information in multiple linked views. For illustration,
we use a flight delay network dataset [1] as an example of multi-
variate geospatial network data, but any multivariate network data
can be populated into our system. Multivariate network informa-
tion is provided in the geographical view (F) where any operational
variable can be used for coloring the node (e.g., anomaly score).
The user can explore the data in either a matrix view or a paral-
lel coordinate view (G). Note that (G) has two tab views at the
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Figure 2: Thread example, showing a single link with multiple
threads. Width of each thread within a link is adjusted based on
the contribution of each variable. Contribution of each variable in this
example is as follows: Variable 1 (Orange) = 0.5, Variable 2 (Blue) =
0.3, Variable 3 (Green) = 0.2.

bottom, and a parallel coordinate view example in (G) is shown
in Fig. 7. Similarly, time-varying variables (e.g., delays) are pre-
sented in different linked visualizations for efficient exploration in
the calendar view (A), clock view (B), and line graph view (C). In
the bar chart view (L), the user can interactively compare 1) five
delays in all petals, 2) five delays in a petal pie wedge, and 3) five
delays for an origin-destination pair thread. The height of the bars
is normalized and the numeric delay information (longest) is pre-
sented in (L). The hourly delay of paths view (J), is designed to
allow users to explore attributes in a series of nodes on the paths
that a user specifies. With the flight delay data, the user can com-
pare the delays between a direct flight and stop-over flights. As an
example, DFW–ORD–IND is shown in (J), where we see that a de-
lay will possibly be maximized if a traveler leaves after 1pm from
DFW and between 7pm–9pm from ORD. Users can select airports
for analysis in (I) and choose the time in (K). In the system, the
line graph view presents temporally aggregated data (e.g., weekly,
monthly, yearly). The parallel coordinate view (discussed later in
Section 5.2) can be be used to explore the attributes and their value
distributions, as well as designing and selecting Query Conditional
ATtributes (QCATs, discussed in Section 4) for anomaly detection.
Based on characteristics of the data, perceptually appropriate color
maps are chosen from both sequential and qualitative color maps
from ColorBrewer [20].

3.1 Spatial Multivariate Network Visualization
Unfortunately, a barrier exists in analyzing multivariate network
data because visual clutter and complexity often occur in visualiz-
ing multiple variables for a node with multiple links between nodes
in the map. To reduce such clutter and complexity in the analysis,
we design threads (see Fig. 2) and petals (see Fig. 3) for exploring
multivariate link network data. Threads connect an origin to each
destination and visualize multiple link variables. Because visual
clutter around the origin is often generated by link visualization
and our threads, we also design petals to present aggregated and
simplified many-to-many network link data. Threads and petals are
designed based on the following requirements for the visualization:
R1 A visualization should present multiple variables describing the

relationships between an origin and multiple destination nodes
on the map. Here, users should be able to see an overview
of the multivariate relationships and discern at least the largest
variable in the visualization for both one-to-one and one-to-
many relationships.

R2 The visualization should provide simplified one-to-many mul-
tivariate spatial networks with minimum visual clutter. Use
of node rearrangement techniques (e.g., force-based model al-
gorithm [31]) is not allowed to maintain geospatial semantic
meanings.

R3 Users should be able to discern in the visualization for R2
which one-to-many network has the largest aggregate value and
which variable has the largest contribution for the largest aggre-
gate value of the one-to-many network.

R4 Multiple variables describing the statistics for a node should be
visually presented.

For goal R1, we design threads, and for goals R2–R4 we design
petals. In the following sections, we explain their visual represen-
tations in detail.
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Figure 3: To show the petal coverage including destinations, petal
coverage guide lines are provided (Other coverage aids examples
are in Fig. 5 and Fig. 9). For comparison of petal lengths, equal-
radius circles are drawn on all petals as shown. The radius of the
circles is the length of the petal where a user’s mouse is hovering.

3.1.1 Thread Visual Representation
We design the thread visualization for representing multiple link
variables with a focus on the relationship in an origin-destination
pair (R1). Each network link consists of multiple threads, and each
thread’s width is scaled based on a link variable’s value. Therefore,
each link has the same number of threads as the number of link
variables, but with varying thread widths. While GreenGrid [46]
utilizes the force-directed layout [31] and presents a (combined)
variable on its links, the threads are placed on physical locations
and present multiple variables. Users can choose the node vari-
ables to be encoded in the thread link width. Fig. 2 illustrates an
example presenting how link variables can be mapped to threads.
In this work, we use the departure delay times for each cause of
delay as the link variables. This visual representation helps users
easily identify which link has the largest delay and which delay
type contributes most to the delay. In addition, when a link is spec-
ified as an anomalous link, it is located on the top in the stack of
threads and other links become transparent so that the anomalous
link can be highlighted as shown in Fig. 1 (F). To show the direc-
tion, an origin node is larger than other destination nodes and has a
black outline on the node. Note that Bezier curves are utilized for
the link visualizations, and threads can be sorted (e.g., departure
delays or anomaly scores in our implementation). We incorporate
general Bezier curves [32] but we configure the control points of the
curves so that long-haul flights tend to be straighter than short-haul
curves. In addition, we invert the direction of the normal vectors
of the curves alternatively to prevent the case that all control points
are moved to one direction in each quadrant. To help user percep-
tion, our system provides zooming (with a mouse wheel) and allows
users to select the thread base width.

3.1.2 Petal Visualization
We introduce petals, a new directionally-aggregated radial visual
representation as shown in Fig. 3 (Dallas, TX). In this represen-
tation, we can provide aggregated directional multivariate network
link visualization with minimal visual clutter because we avoid link
crossings [8]. Moreover, the spatial and multivariate characteristics
are preserved and emphasized. Each directional petal (DP) encodes
various information between one origin and multiple destinations in
a given aggregate direction. Many transportation and logistics prob-
lems do have variable variation that is directionally dependent due
to transportation paths, weather, routing, etc. By radiating from
the origin location to multiple directions (one- to-many), a petal
presents the geospatial relationships (R2). The petal length encodes
a selected variable value (R2). Additional variable information is
then encoded as radial sections within each petal (R3). For exam-
ple, with the flight delay network data, the average departure delay
for the flights heading for airports in a certain radial direction is
mapped to the length of the petal. Then, the five types of delays
are encoded by length (i.e., a segment on a radius) inside the petal
presenting the contributions of each delay type. Thus, we interpret
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Figure 4: Calendar view showing delay patterns for 2006–2007. In general, there were long delays in the summer and winter seasons, while
APR–MAY and SEP–OCT did not have as many delays. Some delays increased around the holidays (highlighted in yellow), but not all holidays
had much impact on the delays.

that DP2 in Fig. 3, has a large NAS (National Aviation System,
pointed by an red arrow) delay from Dallas. This indicates a large
air traffic delay for the destinations, especially toward the airports
in New York. Within a petal, we insert a pie chart visualization to
show comprehensive overviews and comparisons among multiple
variables in a node (R4). In the system, users can turn the petal dis-
play on and off. By default, we assign 12 petals for each origin, but
users can change the number of petals, merge two adjacent petals
or split one petal into many petals if necessary. To help users easily
recognize the destinations included in a petal, our system provides
petal coverage guide lines as shown in Fig. 3. In addition, when
the mouse hovers on a petal, the destinations included in the petal
turn red for better recognition. Lastly to ease comparison of petal
lengths, equal-radius circles are drawn on all petals. The radius of
the circle is the length of the petal where a user’s mouse is hover-
ing (e.g., the radius of the current circle in Fig. 3 is the length of
DP2). A tooltip presenting numeric information is provided when a
mouse hovers at the center of the petals. This can be used for com-
paring a variable at one location to a variable at another location.
Note that the data for the destinations within a petal’s coverage are
aggregated and visualized together in the corresponding petal.

3.2 Network Matrix Displays

Matrix displays have been adapted in various network visualiza-
tions because they are effective in providing an overview and re-
lationships of nodes in a dense network. We utilize the matrix
displays in our system to provide more complete multivariate net-
work information, as shown in Fig. 1 (G). Our system allows up
to three matrices, where the y-axis of all matrices are the origins
while the x-axis represent destinations. For example, for a flight
delay network data for 20 airports, we place the departure delay ma-
trix in (G-1), the dominant delay type matrix (e.g., weather, secu-
rity) in (G-2), and the anomaly Z-score (or standard score, z = x−µ

σ

where µ is mean and σ is standard deviation) matrix (G-3) from our
information-theoretic model as discussed in Section 4. Note that a
Z-score filter is applied so that red links have Z-scores larger than 2
(97.7%) and purple links have Z-scores between 1 and 2 (84.1%).
In our implementation, users can optionally make G-3 present addi-
tional delay information (e.g., delay by airplane ages and by airlines
as shown in Fig. 6 (c) and (d)). When a mouse hovers on a link, a
tooltip pops up to display detailed information including delays of
different types, the number of flights, and the anomaly scores, as
shown in Fig. 1 (G-1). This interaction method is useful when a
user wants to find out whether a delay type presented as a dominant
type in (G-2) is indeed dominant among all delay types.

3.3 Time Series Displays

In order to present temporal trends, our system provides various
time-series views: a calendar view (A), clock view (B), and line

graph view (C) in Fig. 1. With the calendar representation [44]
that applies a calendar metaphor to effectively reveal seasonality
and cyclic trends, our system presents the delays by using different
shading levels. For instance, the longer delays are presented with
darker red. In addition, to help users identify any holiday effect,
the week including a holiday has a yellow background. In order to
supplement the functionality of the monthly trend line graph, our
calendar representation provides additional weekly information on
the right side of the calendar (A-1) and day of weekly patterns at
the bottom of the calendar (A-2) in Fig. 1. The clock representa-
tion (B) is an efficient tool to detect houly trends [17], and we en-
code variables using areas to enhance visual perception according
to Stevens’ power law [39]. The line graph view (C) presents the
types of aggregated delays as well as statistics such as the number
of total flights, delayed flights, and average delay time.

4 ANOMALY DETECTION AND HIGHLIGHTING

The visualizations in our system are able to draw upon an
information-theoretic model for anomaly detection in a context-
sensitive manner, utilizing the anomaly data for a consistent high-
lighting strategy shown throughout the visualization pipeline. For
example, while Fig. 1 (G-3) explicitly encodes the anomaly score as
the primary visual attribute, Fig. 1 (F) focuses on highly anomalous
routes with thin outlines. In this case, attribute aorigin =DFW (Dal-
las) is set as the condition in the model. What defines an ‘anoma-
lous’ record depends upon the user’s design and definition of indi-
vidual anomaly detectors, QCATs, discussed in detail in this sec-
tion. From a visual analytical perspective, these QCATs provide an
overview of records where important attributes deviate from usual
for specific conditions.

4.1 Overview of Anomaly Detection Method
Chandola et al. provided a comprehensive survey on methods for
anomaly detection [11], categorizing them based on the nature of
inputs, instance types, algorithmic mechanisms, and forms of out-
puts. For multivariate network data, we are interested in methods
that can:

• Handle multi-dimensional records – because the main flight
data concerned is a structured data stream consisting of 29
attribute dimensions (e.g., ≥ 10);

• Address the need for detecting contextual anomalies – which
can provide a high-degree of flexibility and accommodating
dynamic data and task variations in different detection sce-
narios;

• Facilitate an unsupervised algorithmic mechanism – alleviat-
ing the lack of training data in many situations;

• Generate anomaly scores as outputs that can be effectively
conveyed by most visualization techniques.
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prevalent (out-bound) delay for DTW and MSP while NAS delay is the prominent delay for the incoming flights (vertical) in at EWR, JFK and LGA
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Figure 6: Airports are sorted by delays. ORD shows the longest delays in many out-bound flights in (a). The dominant type of delay was carrier
delay and LAD in (b). UA and AA had the longest delays in ORD when ORD was top by delays in (c).

In general, the family of statistical and information-theoretic
methods can address the above-mentioned requirements better than
the families of classification-, nearest neighbor- and clustering-
based methods. As information theory is fundamentally built on
probabilistic and statistical measures, information-theoretic meth-
ods may also be considered as a subset of the family of statistical
methods. In this work, we use an information-theoretic method be-
cause of advantages as highlighted in [11]. “(1) They can operate
in an unsupervised setting. (2) They do not make any assumptions
about the underlying statistical distribution for the data.”

Let A= {a1,a2, . . . ,an} be a set of n variables. Each data record,
R= {v1,v2, . . . ,vn} be a n-tuple, where vi represents a valid value of
attribute ai. In a practical scenario, an attribute, ai, may have a very
large or infinite number of valid values. Binning is normally used to
facilitate more accurate estimation of the probability of each valid
value. In the following discussion, the probability distribution of an
attribute, p(ai), is assumed to be estimated in conjunction with an
appropriate binning scheme.

The attribute set, A, is divided into three mutually-exclusive sub-
sets, Acnd , Avon, and Ains. As anomalies are context-sensitive,
Acnd defines the context of a type of anomaly as a particular con-
dition, such that all attributes in Acnd are associated with specific
values. For example, we may have a4 = 1(Monday), a17 = JFK,
a18 = LHR. The attributes in Acnd are referred to as conditional
attributes. In some situations, a conditional attribute may also take
a range of values, e.g., a4 = 1,2,3,4 or 5 (Monday–Friday).

The attributes in Avon play the primary role in determining an
anomaly score for each record that has met the condition defined
by Acnd . These attributes are referred to as Variants of Normality
(VON). The remaining attributes, which are grouped into Ains, are

considered to have “insignificant” influence on the type of anomaly
concerned and are therefore excluded in the computation. Such a
decision is usually made based on some known factors or logical
reasoning by the user.

A combined configuration of Acnd and Avon in relation to the
overall attribute set A, subsequently, determines how anomaly
scores are estimated for each record. Given a record R, we first
retrieve all records that have the same conditional attribute values
as R. Let this collection of records be R1,R2, . . . ,RW , where W is
usually a very large number. We now consider only the variants of
normality defined by Avon = {x1,x2, . . . ,x j, . . . ,xs}. In conjunction
with a binning scheme, each attribute, x j , may take valid values that
are mapped to a set of t j bins B j = {b j,1,b j,2, . . . ,b j,t j}. For the s
attributes in Avon, there are a total of: t1×t2× . . .×ts different com-
binations of bins across different attributes. These combinations
collectively define an alphabet Z , and each unique combination is
a letter z ∈Z .

The selection of an appropriate binning scheme for each attribute
x j is essential for ensuring that the total number of letters |Z |
is smaller than the total number of records W . Ideally, we have
|Z | << W . We can, then, estimate the probability of each letter
z ∈ Z based on the collection of records R1,R2, . . . ,RW , resulting
in a probability distribution function p(z). For the given record R,
we obtain its probability p(R) by mapping it to its corresponding
letter in Z . The level of self-information is I(R) = − log2(p(R)),
which is also called surprisal. We use this surprisal value as the
anomaly score for the given record R. The level of uncertainty of
this score can be defined as H(Z )/ log2(|Z |), where H(Z ) is the
entropy of the alphabet Z .
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Figure 7: Using Parallel Coordinates to Design QCATs: (top) Explor-
ing the attributes as a parallel coordinate plot; (bottom) Specifying an
individual attribute’s bin specification

It is necessary to emphasize that the anomaly score obtained for
R reflects only the type of anomalies encoded by the specific con-
figuration of Acnd and Avon. Hence, each configuration is only for
queries of a specific type of anomaly in a particular context. We
call each configuration a QCAT (Query Conditional ATtributes). It
is not difficult to see that a visual analytics system can be equipped
with one or more QCATs. For a given record, scores obtained using
different QCATs can be aggregated, though it is necessary to under-
stand the semantic implication of combining different QCATs and
the difference between different aggregation methods (e.g., mean or
max). Section 5.2 discusses the workflow for working with QCATs
in a visual analytical system.

The information-theoretic method for anomaly detection is not
an algorithm in a traditional sense. Using this approach, anoma-
lies are defined mathematically based on the probability of events
captured by the historical data. So in relation to this definition of
anomaly, the probabilistic ranking of events using the method is al-
ways correct. On the other hand, machine learning methods mostly
use a different definition, where an event is anomalous if it is sub-
jectively annotated as an anomaly. So the goal of a learned algo-
rithm is to mimic human perception of an anomaly. One cannot
compare the accuracy of these two methods directly. For qualita-
tive comparison, refer to the survey by Chandola et al. [11], where
a few other approaches are considered. The mathematics is not new
in this algorithm [12,41] but to the best of our knowledge, this kind
of probabilistic measures have not been used in visualization, or for
the flight data.

4.2 Implementation & Scalability

We have conducted a series of tests on the scalability of QCATs.
Two implementations, client- and server-based, have been devel-
oped using PostgreSQL [3]. The former performs the grouping and
aggregation on the client (i.e, in native code), and the latter uses a
stored procedure hosted by the database server. Both server- and
client-based implementations show that QCATs are linearly scal-
able in relation to the number of records used in the computation;
the server-based implementation is about 2.5 times faster than the
client-based implementation. Additionally, the client implementa-
tion is more sensitive to the network bandwidth and latency to the
database server.

In our scalability tests, we have found that the performance of
the server-based solution can be seriously affected by the number
of VONs in Avon, while the client-based implementation shows

A

B

C

0 2 4 6 8 10 12
Time of day (2-hour blocks)

0

20

40

60

80

D
e
la

y
 (

1
5

 m
in

u
te

 b
lo

ck
s)

4

6

8

10

12

14

16

A
m

o
u
n
t 

o
f 

su
rp

ri
sa

l

(a) Atlanta (b) Pocatello Regional

0 2 4 6 8 10 12
Time of day (2-hour blocks)

0

20

40

60

80

D
e
la

y
 (

1
5

 m
in

u
te

 b
lo

ck
s)

3

4

5

6

7

8

9

10

11

A
m

o
u
n
t 

o
f 

su
rp

ri
sa

l

0 2 4 6 8 10 12
Time of day (2-hour blocks)

0

20

40

60

80

D
e
la

y
 (

1
5

 m
in

u
te

 b
lo

ck
s)

4

6

8

10

12

14

16

A
m

o
u
n
t 

o
f 

su
rp

ri
sa

l

(c) Sitka (d) John F Kennedy Intl

Figure 8: Heatmaps representing the surprisal spaces of flights leav-
ing four different airports, with (x) Time of day (bin size: 2 hrs), and
(y) Departure delay (bin size: 15 mins)

steady linear scalability in relation to the increasing number of
VONs. The largest factor is the amount of shared buffers pro-
vided to PostgreSQL. The scalability of entropy computation is lin-
ear but does rely on recomputing past data due to updated prob-
ability masses. However, Arackaparambil et al. [7] show that a
distributed method for conditional entropy computation is feasible,
while Guba et al. [18] demonstrate entropy estimation in stream-
ing insert-only datasets. In the following sections, we describe how
our system presents multivariate network data and visualizes the
detected anomalies.

5 GEOSPATIAL MULTIVARIATE NETWORK DATA EXPLO-
RATION

As an example, we will use US domestic flight delay data from the
Bureau of Transportation Statistics (BTS) [1] where each data row
provides information for an individual flight including origin, des-
tination, day of week, day of month, scheduled (departure/arrival)
time, and real (departure/arrival) time and type of delay. There are
five types of delays. Carrier delay is a problem within the airlines’
control including mechanical problems of aircrafts, while NAS de-
lay is caused by the control of the National Aviation System (NAS)
including heavy traffic volume. Late Arrival Delay (LAD) is caused
by the late arrival of the same aircraft at a previous airport. Security
delay includes re-boarding time due to security breach and waiting
time at the screening equipment. Weather delay means delay caused
by extreme weather conditions at point of departure or arrival. Note
that NAS delay and Security delay might be caused by the govern-
ment organizations, while Carrier delay and LAD are caused by the
airlines. We use the top 50 airports according to the number of
passenger boardings that encompasses FAA’s OEP-35 (Operational
Evolution Partnership 35) airports accounting for more than 70% of
the entire number of passengers [2].

5.1 Flight Delay Network Exploration
In this section, we explore the flight delay network data from 2006-
2007 and summarize delay patterns in terms of temporal (e.g., sum-
mer, winter, holidays, weekly, hourly, and day of week) and spatial
effects including special conditions such as severe weather (e.g.,
blizzards). First, we use the calendar view to investigate data pat-
terns. In Fig. 4, we can see long delays as prominent seasonal pat-
terns in the summer (B, F) and winter (C, G), while shorter delays
were recorded during April–May and September–October. Another
visible pattern is that there were fewer delays on Tuesday and Sat-
urday in (J). We find that the patterns are related to holidays that are
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Figure 9: An example for a petal experiment. With the visual aid,
users could better tell that CVG is included in DP1 while PIT is in-
cluded in DP2.
concentrated in summer and winter (e.g., Independence Day in July,
Christmas in December, personal vacations) but long delay patterns
are not indicated for Martin Luther King Day in January and Labor
Day in September. Moreover, long delay patterns tend to increase
in 2007, especially in the summer (B and F). Also, there is a sudden
spike (D) shown with the darkest red that might be another point for
investigation.

Next, we can explore the aggregated delays for two years in the
matrix view as shown in Fig. 5 (a, b), where we see some inter-
esting patterns. The most prominent pattern is the series of hor-
izontal and vertical dark red links (long delays) generated at the
Chicago O’Hare Airport (ORD) in (a), which indicates that both
in-bound (horizontal) and out-bound (vertical) flights were severely
congested. We also observe that such delays in ORD were caused
mainly by late arrivals of aircraft (horizontal green line) shown in
(b). In addition, we notice that there are five distinguishable vertical
blue lines in the matrix (b) and four of them (EWR, JFK, LGA, and
ORD) were regulated by the High Density Rule (HDR) enacted in
1969 by the FAA due to severe congestion. This may indicate that
the rule might not be strong enough to prevent such long delays.
The delays in DTW (Detroit) and MSP (Minneapolis), which are
two of the biggest hubs of Delta Airlines, are not very long com-
pared to those in other top congested airports. However, it is inter-
esting that the major type of delay is carrier delay (orange) caused
by the airline itself.

Since one of the highest delays is observed in winter as shown
in Fig. 4, we use our petal visualization with winter seasonal data
for finding patterns and types of delays in the network as shown
in Fig. 5 (c). We can select as many petals as designed for the
exploration as long as minimal visual clutter is maintained. One
interesting finding is that the flights heading for HNL (Hawaii) from
the west coast airports (SEA and LAX) have relatively long delays
(e.g., 120 minutes on average) and the prevalent cause for the delay
is carrier delay. Moreover, those airports also have relatively long
NAS delays for flights heading for north-east destinations (ORD,
and airports around New York).

The next interesting aspect is the delay distribution by time as
shown in Fig. 1 (B) in the proportional mode with area encoding
for each delay type. Here, we see a trend showing that delays in-
creased from 6 am and had a peak around 6 pm. It is noted that this
is the same pattern shown in the late aircraft delay while other types
retained their proportion. This suggests that delays propagate dur-
ing the day, a problem that Mazzeo termed “cascading delays” [29].
Such trends may imply that delays might be effectively reduced
because these delays can be controlled either by the airlines (car-
rier delay/late arrival delay) with enough of an interval or layover
time between two consecutive flight schedules, or by a government
agency (e.g., Federal Aviation Administration) with advanced sys-
tems for air traffic control. Threads can be a good means for under-
standing delay patterns, as well as the concentration of delays and

Figure 10: An example of a thread experiment. 40% of the partici-
pants answered incorrectly that green was the prevalent delay due to
the severe color concentration around the origin.
complications at hub airports. Figure 1 (F) presents an example of
the complicated network status at DFW, a hub of two major airlines
in Threads (April 2012). Here we see that the airport has many con-
nections with airports across the U.S., and the major type of delay
is late arrival delay (green) and carrier delay (yellow). In addition,
the flights heading for New York City suffer from NAS (National
Aviation System) delay.

Of primary interest are the patterns in the length and types of de-
lays that can be can be better explored by sorting airports. We see
that the ranks change with little variation based on seasons, but most
delays are caused by major airports including ORD (Chicago), ATL
(Atlanta), LGA (New York City), EWR (New York City), DTW
(Detroit), LAX (Los Angeles), LAS (Las Vegas), and DFW (Dal-
las) as shown in Fig. 6 (a). From the type matrix Fig. 6 (b), we
notice that in many highly-ranked airports, the main type of delay
is the late arrival delay in busy travel seasons while the NAS de-
lay is dominant at other times. This implies that the NAS might
not be properly adapting to the current increasing traffic in terms of
delays. On the other hand, we notice that the two distinguishable
airlines causing delays are AA (American Airline) and UA (United
Airline) in the two most delayed airports as shown in Fig. 6 (c). The
dominant delay type matrix in Fig. 6 (b) indicates that the airlines
are responsible for solving the delay problem because the dominant
types of delays were carrier delay and late aircraft arrivals.

5.2 QCAT Workflow
As discussed in Section 4, our system features an information-
theoretic anomaly detection system that is comprised of a set of
user-defined QCATs. The design of a QCAT can be based on a spe-
cific hypothesis, or as a more general monitoring system for one or
more attributes. Ideally, in a deployed system, the roles of QCAT
designer and overall analyst would be disparate, with the analyst
analyzing the data for anomalies and reporting back to the designer
to refine the QCATs based on new trends.

To assist the user in defining the QCATs in the system, we
provide a design tool based on parallel coordinates (see Fig.
7 (top)) while the user is able to explore the attribute space by
adding/removing attribute dimensions, observing their value dis-
tributions (e.g., probability mass functions), as well as viewing the
record relationship between attributes afforded by a standard paral-
lel coordinates representation. The role of an attribute can be tog-
gled between conditional (green) and VON (black) using the right
mouse button. The user is also able to explore an individual at-
tribute in more detail by clicking the left mouse button that expands
the attribute to the full view to show its distribution in more detail
(Fig. 7 (bottom)). The detail view also shows the attribute’s bin
width specification, which can be modified per QCAT. The user’s
choice of bin width has an effect on the anomaly results and reflects
the user’s knowledge of the attribute’s semantic meaning. The sys-
tem maps data types to suitable bin width granularities automati-
cally. For example, timestamp datatypes are divided into bins of n
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Petal Index Difference (%) Accuracy (%) Time (s)
DP1 4 (Small) 76.7 8.2
DP10 21 (Large) 100 3.7

Table 1: Participants found the longest delay inside a petal more
accurately in less time as the difference became larger (HP1).

Petal Index Difference (%) Accuracy (%) Time (s)
DP9 3 (Small) 46.7 (83.3) 6.6 (5.4)

SLP10 12 (Large) 96.7 (100) 3.9 (2.6)

Table 2: As the difference became larger, the participants better de-
tected the shortest delay (HP2). Visual aids improved both the accu-
racy and efficiency (HP5).

minutes; categorical data such as strings are unbinned. Since inte-
ger types may represent categorical, interval or ratio measurements,
we assume a default bin width of 1 and let the user decide upon a
more suitable width.

Once the user has defined a QCAT, it can be saved to the QCAT
library and selected as the active QCAT. Anomaly-supporting vi-
sualizations in our system such as the network matrix view update
to reflect the anomaly scores by completing the relevant condition-
als in the QCAT (i.e., origin and destination pairs) and executing
the QCAT on the data to obtain statistics (i.e., mean, max, vari-
ance) on the surprisal values for records matching the condition-
als. Our system by default displays the maximum surprisal value
as the anomaly value mapped to a visual attribute (i.e, outline on
threads) in the visualization. The anomaly values in the visualiza-
tions guide the user to identify abnormal flights based on their own
criteria specified in the design of each QCAT. Anomalous results
can then be explored further using the available visual analytical
tools to understand why the anomaly value was high and report
these findings to the QCAT’s designer.

For a QCAT consisting of two VONs, we can illustrate the
anomaly distribution using a heatmap. Fig. 8 shows the anomaly
space for flights leaving four different airports for the years 2006
and 2007. The x-axis shows the time of day (morning) divided
into two-hour blocks, and the y-axis shows the amount of delay
in 20-minute blocks (notice that flights can leave early). Areas of
low surprisal value are black and become amber with higher sur-
prisal values. It is clear that for this airport, flights around 4AM
are uncommon, and the amount of delay seems to increase steadily
throughout the day until late afternoon before leveling out. For the
Atlanta airport, three example records, A, B and C are shown of high
(≈19.68), slightly above average (≈14.36), and low (≈3.478) sur-
prisal values, respectively. Investigating these flights using threads
shows that late aircraft were largely to blame for both A and B; how-
ever, in the case of A the high surprisal value indicates that such a
large delay is unusual at this time of the morning. At C, we find
ourselves in the ‘usual’ low-anomaly area for this airport, where
delays are close to zero for most of the day.

A professional analyst from an industry-leading company that
deals with flight delay data evaluated our system and our ap-
proaches used in this work. The analyst mentioned that, at this
company, they do not have such visual tools that can enable visual
analysis of multiple variables at different locations and different
times. Therefore, our system is excellent for dealing with challeng-
ing data in the flight delay domain, and it is cutting-edge work for
the industry. In particular, the information theory based anomaly
detection approach is very intriguing, and it has not been applied
to analyses in the industry as of today. Lastly, the analyst sug-
gested visualizations of correlations and propagation of delays (or
cascading delay) as key properties of an interconnected network to
enhance our system because such visualizations allow for a form of
root-cause analysis to help analysts see what is driving delays in the
network and what is happening to the delay debt.

Petals Diff. (%) Accuracy (%) Time (s)
SLC+SFO+PHL 2 (Small) 36.7 (73.3) 10.9 (6.8)
SLC+SFO+PHL 12 (Large) 96.7 (96.7) 4.7 (5.1)

Table 3: Users had difficulty finding the longest delay among distant
petals with a small (2%) difference (HP3). The visual aid helped the
users better answer with a small difference (HP5).

6 USER STUDY

In order to evaluate the petal and thread designs, we performed
a user study with 30 participants recruited from various majors at
our university. In the study, the participants were given computer-
based tasks for verifying hypotheses. Various difference levels in
the flight delay network data were used in the tasks. Note that the
difference level in this section means the difference between the
longest (shortest) and second longest (shortest) delays. Note that
the numbers in parentheses in Table 2, Table 3, and Table 4 are
the results with visual aids. We use a paired t-test to check if our
experimental result obtained is significant (p-value < 0.05) within
a 95% confidence interval.

6.1 Petal User Study Results
We first set up the following hypotheses for the petals visualization
as follows:

HP1 As the difference becomes larger, users will show high accu-
racy and speed in detecting the longest delay inside a petal,

HP2 As the difference becomes larger, users will show high ac-
curacy and speed in finding the shortest (or longest) delay
among petals for one operational place (e.g., airport),

HP3 Users will show lower accuracy in finding the shortest (or
longest) petal among the petals at multiple operational places,

HP4 Users will show low accuracy and speed in finding whether
an airport is included in a petal as the distance between the
petal and the airport becomes longer and as an airport is close
to the boundary of the petal, and

HP5 Visual aids will improve accuracy and speed.

TASK1 for verifying HP1 asked the participants to choose the
longest delay inside a petal in 2 locations: DP1 (delay difference:
4%) and DP10 (21%), as shown in Fig. 9. The participants showed
higher accuracy and speed as the difference increased (Table 1, p-
value < 0.05). In TASK2, for verifying HP2, the participants were
asked to select the shortest petal in 2 locations: DFW (3%) and
SLC (12%). For a small difference (3%), 46.7% of the participants
answered correctly. As the difference became larger and the visual
aid (circle) was provided (HP5), both accuracy and speed were im-
proved (Table 2, p-value < 0.05). TASK3 was the same as TASK2
but multiple petals at Salt Lake City (SLC), San Francisco (SFO),
and Philadelphia (PHL) were presented concurrently. Here, the par-
ticipants showed lower accuracy (from 46.7% to 36.7%) and slower
speed (from 6.6s to 10.9s) compared to the results in TASK2. The
visual aid (HP5) improved both accuracy and speed in the lower
difference (Table 3, p-value < 0.05). In order to evaluate if users
accurately recognized the coverage of each petal (HP4), TASK4
asked the participants to select airports that were included in DP1
and DP9, as shown in Fig. 9. As summarized in Table 4, the par-
ticipants showed low accuracy (23.3% and 60%). The main reason
for such low accuracy was that it was hard for them to find whether
CVG (Cincinnati) and PIT (Pittsburgh) were included in DP1. In
the same context, only 60% of the participants correctly found that
SAN was not included in DP9. However, with the visual coverage
line (HP5), both the accuracy and speed improved.
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Petal Index # of Airports Accuracy (%) Time (avg.)
DP1 8 23.3 (83.3) 1.96 (1.18)
DP9 8 60.0 (93.3) 2.3 (1.3)

Table 4: The participants had difficulty finding whether CVG and PIT
were included in DP1 (HP4). The visual aid helped the users better
recognize if an airport was included in a petal or not (HP5).

Difference (%) Accuracy (%) Time (s)
3.1 (Small) 66.7 5.2
28 (Large) 100 2.9

Table 5: The participants made errors and spent more time finding
the longest delay when the difference in threads was small (HT1).

6.2 Thread User Study Results
Next, we set up hypotheses for the threads. As the difference be-
tween the longest and the second longest delays becomes larger, the
users will produce better results in HT1) detecting the longest delay
inside the threads, and in HT2) choosing the most prevalent delay
among all the threads. TASK5 for verifying HT1 asked the partici-
pants to select the thickest thread for small (3.1%) and large (28%)
difference levels. As summarized in Table 5, when the difference
was small (3.1%), it was hard for the participants to tell the longest
delay (66.7% accuracy). On the other hand, when the difference
became larger, they answered very accurately and spent less time
(p-value < 0.05). TASK6 for verifying HT2 asked the participants
to tell the longest delay when all the threads were considered. Here
we see a similar result as in TASK5: the larger the difference, the
higher the accuracy and the slower the speed (Table 6). In TASK6,
we had an interesting result showing that special concentration of
a color may interfere with accurate visual perception. For exam-
ple, we can see LAD (green) is concentrated on short-haul routes
as shown in Fig. 10. In this case, 40% of the participants thought
that LAD was the longest delay for flights leaving from Atlanta, but
in fact the carrier delay was 23% larger than LAD. This error rate
is unexpected compared to the result in TASK5 where the partici-
pants showed higher accuracy and speed with a similar difference
(28.6%). Conversely, we think it is possible that users could assume
that the color on long-haul routes has the largest value if the color is
concentrated in long-haul threads. To prevent this, our system pro-
vides numeric information in the legend view that users can refer
to, as shown in Fig. 1 (E).

7 LIMITATIONS AND DISCUSSION
Petals have a similar appearance to the rose or sunburst diagrams
that have been adapted in various contexts [15, 30, 37]. The con-
tribution of petals lies in extending the usability of the family
of the rose diagram by allowing geographically-directional, multi-
variate, and aggregated network analysis simultaneously. Discern-
ing widths of thread can be hard when each variable has similar
values or when a unit thread within a route is not thick enough
for visual perception. In addition, when a color is concentrated on
long-haul or short-haul routes, it could be hard to select the largest
value among all threads. In these cases, a line with a superim-
posed histogram can be utilized. To help users with these issues
with threads, our system provides interactive bar charts and the nu-
meric variable information in the legend view when a user specifies
an area of threads (aggregated) and in a tooltip when the user’s
mouse hovers over an airport (origin to destination). The tooltip in
the matrix view can be used for verifying that the presented dom-
inant delay (Fig. 1 (G-2)) is indeed dominant compared to others.
The scalability of threads can be limited by two factors: the num-
ber of variables and the links. In our system, the number of links
can be adjusted by the on/off function in threads and the provided
network matrices can complement the link analysis. Our user study
implies that a thread with 30% larger value than the others can be

Difference (%) Accuracy (%) Time (s)
11 (Small) 90 5.3

28.6 (Large) 100 2.9
23 (Large) 60 5.1

Table 6: 40% of the participants answered incorrectly with a large
difference (23%) in finding the prevalent delay among all threads.
This may indicate that color concentration on long-haul or short-haul
threads interferes with visual perception.

distinguished from the others. However, a fundamental issue when
a large number of variables is used becomes how many colors a
human can distinguish and which colors should be used. Harrower
et al. suggest 12 distinguishable colors [20] but a lower number
of colors would be effective for the threads due to the difficulty in
comparing widths.

8 CONCLUSION AND FUTURE WORK

We have explored complex multivariate network links with mul-
tiple tightly-integrated interactive visualizations. We have intro-
duced two new visual representations, petals and threads, for spa-
tial multivariate link visualization. Our sortable matrix displays
have the ability to represent multiple origin and destination pairs,
while the linked line graph, calendar, and clock views give oppor-
tunities to find temporal characteristics. An information-theoretic
anomaly detection model was introduced based on conditional at-
tributes, with the visualizations in the system utilizing the surprisal
values for visual highlighting of anomalies in multiple visualization
components in a unified manner.

It has several benefits compared to previous systems. Our sys-
tem allows users to investigate the data status of a large number
of operational locations by simultaneously observing various data
characteristics at both aggregate (entire network) and detailed lev-
els (e.g., origin-destination pairs) using our multiple linked view.
Our new visual representations, petals and threads, help users find
features of multiple spatial network variables with minimum visual
clutter; the network matrices aid in analyzing the entire network in
terms of multiple origin-destination pairs as well as origin-attribute
pairs. Seasonal and cyclical trends can be efficiently detected in
the calendar, line graph, and clock visualizations from our system.
Lastly, our system provides an information-theoretic model for de-
tecting anomalies based on conditions. For the evaluation of our
system, we presented an example using flight delay network data
from the top 50 airports to illustrate the use and potential of our
designs and the user study results.

Our system can be easily applied to analysis with any other mul-
tivariate spatiotemporal, network-based data such as transportation
and logistics, trading, and communication industries [8]. As a fu-
ture work, we plan to incorporate the ability to help users find cor-
relations using petals and threads. The capability for visualizing
cascading effects and clusters of operational places that have the
same characteristics will also be investigated. We also plan to use
actual routes to enable comparison with length of flights. In ad-
dition, we would like to explore our anomaly detection more by
investigating methods of combining the anomaly values for groups
of QCATs.
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