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Fig. 1. Visualizing the climate change in China during the period of 1975 - 1989 based on the surface observation data. (a) Global
Radial Map used to visualize the overall state. From the center: a map, a sector-based ring-band and multiple concentric cluster
rings represent the spatial, temporal and clustered information respectively. (b) Time Series Discs, each representing a cluster ring
in (a) and formed by multiple triangular HeatMaps. Time sequence is formed by different concentric rings on the disc. There are
several obvious warm colored rings on each disc, indicating continously rising tempreture in the selected years. (c) ScatterPlot
based on PCA for finding abnormal cases represented by outliers.

Abstract—We present a new approach to visualizing the climate data of multi-dimensional, time-series, and geo-related
characteristics. Our approach integrates three new highly interrelated visualization techniques, and uses the same input data types
as in the traditional model-based analysis methods. As the main visualization view, Global Radial Map is used to identify the overall
state of climate changes and provide users with a compact and intuitive view for analyzing spatial and temporal patterns at the
same time. Other two visualization techniques, providing complementary views, are specialized in analysing time trend and
detecting abnormal cases, which are two important analysis tasks in any climate change study. Case studies and expert reviews
have been conducted, through which the effectiveness and scalability of the proposed approach has been confirmed.

Index Terms—Climate changes, spatiotemporal visualization, station-based observation data, radial layout, visual analytics
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1 INTRODUCTION

As an important part of natural environment, climate is associated
with almost every aspect of our life. According to the IPCC’s 4th
assessment report [4], global mean air temperature greatly increased
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after the 1950s, which was most likely because of the rapid increase
in the discharge of the greenhouse gases generated in human
activities. A series of environmental degradation events caused by
climate change have taken place, for example, ocean level rises,
extreme weather events occur more frequently, and ecological
balance is under threat. Climate changes have received much
attention recently, and related studies are conducted worldwide,
mostly by international collaborative efforts.

Although climate studies are inherently multi-disciplinary and
different domain experts have different views, obtaining continuous,
long-term and large-area observation data on land surface is the
prerequisite for all studies [52]. Climate data containing multiple
parameters, such as air temperature, rainfall, sunshine duration, wind
velocity/direction, are usually generated by meteorological stations
located in representative regions at regular time intervals, thus the
data intrinsically are multi-dimensional, time-oriented and geo-
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related. As the advance of observation techniques, a surface
observation network consisting of thousands of stations has been
established by the World Meteorological Organization (WMO) and
the Global Climate Observation System (GCOS) for climate studies.

Though the techniques used in climate change studies, such as
differential equations, could well capture the evolutionary processes
of spatiotemporal phenomena, they are costly and have other well-
known limitations [10]. For example, most of these techniques attach
great importance to the analysis models, while lacking interactive
processes and the capability of intuitively analyzing big
meteorological data. Individual changes hidden in such statistics-
oriented processes are often ignored, when analyzing the overall
changes. Furthermore, because a large number of climate problems
have no reliable “ground truth” data, it is crucial to develop objective
evaluation methods for comparing the outcomes of different analysis
techniques. We thus resort to visualization techniques, and attempt to
design a visualization framework that can intuitively and
interactively reveal the evolutionary nature of climate change
patterns at different spatiotemporal scales. We aim at addressing the
following requirements [3]. First, climate represents the long-term
average meteorological status in given regions, to evaluate climate
changes, statistical analyses based on decades or longer observation
data are necessary. Second, climate is inherently associated with geo-
information, so the visualization granularities between temporal and
spatial dimensions must be balanced and easily tuned. Finally, apart
from macro and global climate change phenomena, users, such as
climate researchers and policy makers, may also be interested in
local and micro (e.g. abnormal) conditions.

Our goal is to identify climate change patterns through visual
analysis based on in-site climate observation station data which are
also essential for traditional quantitative methods. The proposed
visualization framework for climate changes, which we will call
Vismate, contains three visualization modules, i.e. Global Radial
Map, Time Series Discs and Anomalies Detection Scatterplot. To
evaluate our approach, we used Vismate to analyze China Surface
Data for International Exchange and Global Historical Climate
Network (GHCN) [25] data, as shown in Fig. 1 and Fig. 12
respectively. By consulting domain experts and checking against the
related literature, all the patterns discovered in our case studies have
been confirmed, thus proving the effectiveness and the scalability of
our approach.

The major contributions of this paper include:

e Visimate, a visual analytical framework for discovering climate
change patterns at different spatiotemporal scales.

e Three complementary visualization techniques for spatial and
temporal patterns in a single view, time-series patterns, and
anomaly detection.

e Discovery of several temperature patterns of China and the
world relating to the climate changes.

The remaining part of this paper is organized as follows. Section 2
reviews related work. The approach overview is then described in
Section 3, followed by three complementary visualization techniques
in Section 4, 5, and 6 respectively. Section 7 describes two analytical
case studies and an expert review. Finally, we conclude the paper in
Section 8.

2 RELATED WORK

21 Spatial and Temporal Visualization

Thematic map [41] is perhaps the most traditional method of geo-
related data visualization, which can be viewed as an overlay of
heatmap or glyphs on a map. A novel type of quantitative thematic
map was introduced by Speckman et al. [43], i.e. Necklace Maps.
Taggram [29] is another type of thematic map, in which tag clouds
[26] were plotted on a map to represent the area characteristics.
These methods work well for representing static data, but provide
limited supports for visualizing time-oriented geographic data. Many
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researchers attempted to tackle this problem by jointly using a map
and other time-series visualization techniques. Malik et al. [27]
comprehensively used the map, bar chart, line chart and pie chart to
analyze the correlation between urban crime activities and
spatiotemporal dimensions. Landesberger et al. [24] designed a
dynamic categorical data view (DCDV) to visualize human position
transitions in one day, and associated it with a geography view.
Furthermore, parallel coordinates [20, 47], ThemeRiver [16, 17],
stacked bar charts [30], and even all existing time-series
visualization techniques can be combined with a map to form
effective spatiotemporal data visualization tools. However, these
loosely coupled spatiotemporal visualization methods do not provide
an overview of spatial and temporal dimensions, and lack of intuitive
and compact methods for visualizing spatiotemporal data in a single
view. Different from such multi-view methods, our approach offers
a global yet compact view, integrating both the spatial and the
temporal features.

Radial visualization, or displaying data in a circular or elliptical
layout, is an increasingly common technique in information
visualization [6], which often encode time dimension by several
concentric rings [2, 50]. However, we often ignore its advantage of
representing orientation and position due to its non-directional shape.
For example, Qu et al. [34] designed an s-shaped axis used in
parallel coordinates to represent the wind direction, and Malik et al.
[28] used multiple regular polygons for the comparative visualization.
To improve the effectiveness and gain enough space for extra
visualization components, one often utilizes the inside and outside of
the radial visualizations. For example, Draper et al. [7] put search
conditions in the central space, while Wu et al. [50] utilized inside
space to place a triangular ScatterPlot. A human body chart was laid
in radar plot by Zhang et al. [54] to visualize a person’s health
condition, and Burch [2] drew many thumbnails outside the
outermost ring of the TimeRadar. Inspired by these methods, the
main visualization in our framework has also a radial layout. We
encode time dimension by different concentric rings along radial
direction with a map in the center, so that our approach can visualize
spatial and temporal dimension at the same time. Moreover, the
outside area of the radial plot is utilized to represent clustered
information that is very essential for climate studies.

2.2

Visualization has been an effective tool in climate studies, and there
are many classic visualization methods, such as contour line [49],
standard coloration [41], rose diagram [21], etc.. These methods are
usually simple and can only show analysis results, lacking
interactions and the abilities for discovering the potential knowledge
from big climate data. To clarify the use of the visualization
techniques in climate studies, Nocke et al. [31] performed a
questionnaire with climate researchers. The results showed that
traditional 2D visualization techniques were the most widely used
tools in climate studies, and there was a gap between climate studies
and information visualization techniques. As the advance of
information visualization, more climate researchers have applied the
state-of-the-art visualization techniques to climate studies. Koethur
et al. [22] combined clustering and visualization to capture the
prominent spatiotemporal features from environment models.
Tominski et al. [48] visualized the global climate network using
information visualization techniques. Johansson et al. [19] used a 3D
GIS platform to show the climate data. Both Yannier et al. [S1] and
Janicke et al. [18] have studied how to visualize weather variations,
which are similar to our work. Their studies, however, focus on the
use of touch screen in enhancing the viewer’s perception, which
would potentially complement our work.

The most related idea was that of Drocourt et al. [8], which uses a
radial layout plus a map to study the changes (advance/retreat) of
glaciers in Greenland. Glyphs of different shapes and colors were
drawn on the sectors of a circle to represent individual changes. The
visualization result, however, is a static picture without any
interaction for exploring the detailed information, and the plot can
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only accommodate about 200 objects due to the limited angular
resolution of a circle. Furthermore, the authors did not discuss how
to use this visualization to find the spatiotemporal patterns in other
fields, which prevented it from being used as a more general tool.

To our knowledge, no comprehensive information visualization
technique specialized in climate changes have been developed,
particularly for using the same data as traditional climate studies.

Y

(b)
Fig. 2. (a) A typical meteorological observation station in Dalian,
China. (b) The distribution of about 7000 meteorological observation
stations in GHCN. Colors represent the number of operating years of
the stations.

23 Climate Change Study

Climate change studies focus on trend analyses [14], impacts on
other fields [32] and response strategies [12], in which model-based
methods have been widely used. Many of the latest findings of
global climate changes can be found in the IPCC reports [4, 45].
China has also increasingly concentrated on climate changes.
Notably, Chinese climate scientists have contributed numerous
published scientific findings. These conclusions have specific spatial
and temporal characteristics, for example, Ren et al. [37] found that
the warming was more evident in Northern China than in the South.
Yue et al. [52] draw a time series plot of annual average temperature
in China using a novel spatial interpolation, which clearly shows that
the warming started from the 1980s. Piao et al. [33] pointed out that
precipitation variations do not have significant long-term trends at
the national level since 1960, however, there are significant regional
patterns. Sun et al. [46] found that the number of cold climate
extremes became more moderate, while extremely high temperature
events did not significantly increase [36]. Many other important
findings have been reported by Ding et al. [5].

A clear trend is that more and more data-driven methods have been
applied to climate change studies. Faghmous and Kumar [10]
analyzed the practicability of using spatiotemporal data mining in
climate data. Steinhacuser et al. [44] reviewed the progress,
opportunities and challenges of using the complex network in
climate studies. An important project [23] containing numerous cases
of using data-driven methods in climate change studies has been
funded by the US NSF Expeditions Program in computing program
which is aimed at pushing the boundaries of computer science
research. In general, the inter-disciplinary characteristic of climate
studies becomes more apparent.

Climate change awareness among the public is also a hot research
issue. Schmidt et al. [39] analyzed the media attention for climate
changes of 27 countries by comparing the newspaper coverage.
Adam et al. [15] studied the variation in the translations of the
IPCC’s 4th Assessment Report (AR4) [4] “probability expressions”
between the Chinese and British publications to reduce the public’s
misconceptions of the report. Semenza et al. [40] investigated the
climate change awareness of the public by telephone interviews, and
reported that more than 90% of the people heard of global warming,
but only about half of the interviewed have more or less changed
their lifestyles to reduce the emissions of greenhouse gases.
Although the reduction in greenhouse gas emissions mainly depends
on the international and national efforts, gaining the public support is
of great importance. A recent survey in the United States [35]
confirmed that public opinions on the existence and the importance
of global warming strongly depended on their perceptions of recent

local climate variations. It is, however, impossible to feel and
remember long-term and subtle climate changes for ordinary people.
Therefore, more publicity is needed to promote low-carbon life, and
the information visualization surely plays a positive role in this
aspect.

In summary, although several related studies and projects have
been conducted on data analyses of climate changes, little effort has
been devoted to the customized design of visual analytics in climate
change studies. There is an urgent need for such a visual analytical
tool for both professionals and the public, which is the main
motivation of our work.

3 APPROACH OVERVIEW

31 Data Sources

Our methods analyze land surface observation data, generated
mainly by meteorological observation stations (see Fig. 2a), and used
in almost every climate change study. Thousands of meteorological
stations have been built around the world, operated by different
countries and organizations, as shown in Fig. 2b. Due to the
automatic observation capabilities of these stations, huge amounts of
meteorological observation data are continuously transferred to
designated data centers for archiving. We directly use two datasets of
such kind as inputs, which contain different numbers of stations and
are published on NOAA National Climate Data Center
(http://www.ncdc.noaa.gov) and China Meteorological Data Sharing
Service System (http://cdc.cma.gov.cn) websites.

3.2 Domain Requirements

To better design the climate visualization framework, we classify the
most important tasks of climate change studies into three major
categories:

e Spatial Distribution: identifying climate changes at different
spatial scales, such as continent, zone, country, areas, province
and city.

e Time Series Characteristic: determining the climate change
trends of different areas, highlighting key turning points, and
even predicting the future change based on the patterns observed
today.

e Abnormal Case: discovering the areas that are changed in
patterns drastically different from their neighboring areas.

3.3 Visualization Modules

Based on the collected data and the visualization tasks, we have
developed a comprehensive climate change visualization framework
that contains three modules:

e Global Radial Map — a radial layout including a map shows the
geospatial distribution. The K-Means clustering algorithm is
adapted in this visualization to divide all the stations into a
number of groups, each having similar change rates.

e Time-Series Discs — multiple time-series triangular HeatMaps
around a center point forming a disc, as in Fig. 1b. Each
triangular HeatMap encodes the change rate between every pair
of years of a station during a pre-defined time interval. Aligning
triangles as a disc aims at helping climate experts to compare the
time trends and identify important temporal patterns across
different stations.

e Anomaly Detection ScatterPlot — a slice of a triangle, such as
row, column, or hypotenuse could be selected to form a multi-
dimensional vector. To detect abnormal cases, one could select
any slice from all the triangles to be projected into a scatterplot
based on PCA [21].

Of the three modules, the Global Radial Map offers the primary
visualization, supplemented by other two modules. These modules
have their own strengths and weaknesses, specialized in different
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tasks, and one can use either one module separately, or two or three
together based on the analytical tasks at hand.

4 GLOBAL RADIAL MAP

We believe that full awareness, investigation, and understanding of
both time and spatial patterns at the same time is extremely
important, and therefore design the Global Radial Map to visualize
spatiotemporal patterns in a compact view.

4.1 Map Drawing

To embed a map into a circle, the map’s bounding box should fit into
the circle. Using the traditional longitude/latitude equidistance grid
projection, a world map could be projected onto a rectangle with the
width twice of its height, which will waste much space in the circle,
as shown in Fig. 3(left). We choose to change the map projection by
selecting the Mercator projection [42] featured with shape-preserving
after converting a world map to a square within a specified bounding
box (longitude:-180°~180°, latitude:-85.05°~85.5°). The
phenomenon of area enlargement becomes more serious as latitude
increases, and the regions higher than 85.05° and lower than -85.05°
cannot be mapped. Such effects on our visualizations are, however,
limited due to the area-preserving feature of the Mercator projection
and the fact of only one station (Amundsen-Scott South Pole Station)
in such a high-latitude area.
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Fig. 3. Comparison of traditional longitude/latitude equidistance grid
projection (left) and Mercator projection (right).

Our drawing method not only needs to cater for the world map, it
should also be designed as generic as possible to accommodate other
geographic shapes of different countries. One of the key problems is
to compute the map’s central coordinate. Drocourt [8] used a
modified standard formula to compute the map gravity center of
Greenland. The author, however, has not considered the scale issue
and not tested his method on any map having a concave polygon
contour. Inspired by GIS platforms, we use several interactive
operations, such as pan, zoom-in, zoom-out, etc., to operate maps
containing any countries and areas, instead of using complicated
algorithms. Through these interactions, users could flexibly explore
various geographical areas at any scales in an interactive manner,
which is particularly useful for visualizing big data obtained from a
huge amount of stations.

To keep the map style intuitive and minimize the viewer’s
cognitive effort, we use the online tool ColorBrewer [1] to assign a
color in the recommended color solution to each area. The selected
color solution is also used for spatial mapping (see Section 4.2), in
which stations are colored the same as the areas they belong to.

4.2 Spatial Mapping

Mapping each station with longitude, latitude and elevation 3D
coordinate to a 1D angular coordinate system creates extra space that
could be used to represent time and clustering information. One of
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the challenges in spatiotemporal mapping is to minimize the loss of
spatial information when computing the angular coordinate for each
station. The fact that not all the stations are on the contours of any
country makes the coordinate transformation more difficult.

To avoid that two geographically distant stations are arranged near
each other on the ring, we use a hierarchical mapping strategy, i.e.
first divide a map into several subareas and assign an angular span to
each subarea in proportion to the number of the stations in that area,
and then project the stations in each area onto the ring according to a
reference. We use the latitude coordinate of a station as the reference
(see Fig. 4b), because climate change is sensitive to the latitude.
Having obtained the angular coordinate of the first station in one area,
which is equal to the area’s starting angle, the angular coordinates of
other stations in that area can be determined by simply adding an
equal angular interval to the angular coordinate of the previous
station to simplify the drawing algorithm and to maintain the
symmetry of the visualization, as in Fig. 4a.

Assume P be the set of stations, L be the set of hierarchical levels,
and 4; be the set of subareas at the ith level. The algorithm of
computing the origin;; and span;;representing the starting angle and
the angular span of the jzh area in the ith level as follows:

Algorithm.1 Determine the origin and span of each subarea

L=l L., 1}
Ai = {ai,l’ Ains ees ai,M}
origin, | ¢~ max ({a‘a is the latitude of each stations in au})

Forall/ e L,i>0 do
For all a,;€ A, Ij eL,j>0do

360
span, ; < =—-x

‘P‘ a,l, ‘ represents the station number symbol
if j = 1then
origin, ; < origin, ;,i >1
else
origin, ; < origin, , , +span, ; ,,i>1
End if
End for
End for

clusterl __

I
[ —Fixed angle .
interval

IMap Centre

(b)

Fig. 4. (a) An example of spatial mapping (the ring band representing
time information is omitted); (b) Sorting stations based on their
latitudes.

4.3 Temporal Mapping

The Global Radial Map provides sector-based ring plot for
displaying raw observation data, offering the visualization of the
basic meteorological condition of each station. Radial direction
indicates the positive direction of the time axis. Each sector indicates
the time series of one station, while a radial bin is colored to
represent the concrete attribute value at a time point. Fig. 5a shows a
time series visualization example of four years at six stations. Each
sector is colored according to the attribute value, and the selected



attribute is also used for clustering, to be discussed in the next
subsection. Designing an intuitive and rational color legend is the
key to temporal mapping. We use a Chinese meteorological industry
standard [53] to define the color codes of multiple meteorological
attributes, as depicted in Fig. 5c.

4.4  Clustering

To clearly display the stations experiencing similar climate changes,
the Global Radial Map includes multiple cluster rings, each
representing a cluster of the stations, as in Fig. 1a and Fig. 5b. Warm
and cold colors encode positive and negative average change rates of
the cluster respectively. A ring’s thickness represents the absolute
value of the average slope of linear regression line between time and
a meteorological parameter attribute. To support clustering, we first
compute the slope to represent the climate change condition of a
station. Let X={x1, x2,..., x5} be the set of time points in the selected
time interval, and Y={yI, y2,..., yy} be the set of a meteorological
attribute values at the corresponding time points, and X and ¥
represent the average value of the X and Y. The slope is calculated as
follows:
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Fig. 5. (a) Temporal mapping represented by a sector-based ring-
band. (b) An actual example with 10 cluster rings spanning 4 years.
(c) Temperature legend.

4.5 Typical Usage Scenario

When using the approach, the user should first input parameters to
draw the Global Radial Map. As shown in Figure 9a, the parameter
selection bar contains six parameters, such as the start year, end year,
etc.. If the month checkbox is checked, the Global Radial Map will
use the month dataset, otherwise the year dataset will be used by
default. The number of the clusters can also be selected through a
drop-down-list according to the study requirements. Having
generated the main view, the system also activates other two views.
Moreover, the system can respond to user operations on-the-fly,
because the underlying data structure is carefully designed and the
data pre-processing procedures have been performed.

4.6 Limitations and Alternative Representations

The current visualization design in Vismate may not best suit all
possible scenarios and applications, but could be easily adapted or
tailored for different application requirements. For example, as the
number of stations increases, angular intervals decrease. Therefore,
with a large number of stations, angular intervals are too small to
clearly display each station. To solve this scalability problem, we
could modify our mapping rules in two aspects. First, rather than
assigning an angular coordinate to each station, we can assign it to a
group. Second, the points on a cluster ring indicate the number of

stations of the group on this cluster.

Using the GHCN data (see Fig. 12) as an example, to
accommodate about 7000 stations throughout the world, we can
modify the Global Radial Map. We first construct a hierarchical
structure of three levels: station, country, and continent. Since the
number of the countries in the world is about 200, grouping on
countries enable each group to be clearly displayed along the
circumference. Consequently, the points on each cluster ring indicate
a group of stations in that cluster for the corresponding countries and
the sizes of the points encode the number of the stations of the group
(to be shown in Fig. 12b). To facilitate spatial search and clearly
display the overall state more conveniently, the sector-based ring
plot can be replaced by the station search bins representing different
sub areas, such as continent, country and province. To visualize the
global climate changes, we also add 10 radial bins to indicate the
Arctic Zone, North Temperate Zone, Tropic Zone, South Temperate
Zone, and Antarctic Zone of Eastern Hemisphere and Western
Hemisphere, since climate changes are often associated with the
latitude. When the mouse hovers on one bin, the points in the
corresponding area will be highlighted in the map, as shown in Fig.
12b. Another possible change is to sort all the cluster rings outward
on the average temperature change rates, and thus to display the
overall state more clearly.

5 TimE SERIES Discs

To support more detailed time series analysis, we provide a
specialized visual analytical tool, called Time Series Discs.

5.1 Basic Triangular Component

The basic component of a Time Series Disc is a triangular HeapMap,
as shown in Fig. 6a. Each triangle represents a station’s changes in a
pre-defined time interval. The x-axis of the triangle represents the
end year, while the y-axis represents the start year. Each small
rectangle in the triangle is colored to represent the change rate,
computed by Equation 1, from a start year (x coordinate) to an end
year (y coordinate). Color distributions along a specific direction
could convey interesting patterns among multiple small rectangles.
Fig. 6(b-e) shows four important usages, each corresponding to a
specific slice of the triangle:
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Fig. 6. A triangular component of Time Series Discs. (a) A yearly

marked triangle. (b-e) Four important ways for reading the triangle.

e Row - each row encodes the changes from a year to every other
year. A similar color distribution in one row represents a
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continuous and consistent change from that year to later years,
as in Fig. 6b. Rows offer the most important view, particularly
when multiple triangles are bundled together to form a disc (see
Section 5.2).

e Column - each column encodes the changes from all the
previous years to the year represented by this column. Similar to
the “row”, a consistent color distribution in a column indicates a
minima year (cool color) or a maxima year (warm color). In Fig.
6¢, the overall temperature had risen in the 1980s, because all
the small rectangles in the column of 1990 are in warm colors,
and 1984 had the minimal yearly average temperature, because
the change rates from 1984 to all other years are positive and
those from the previous years to 1984 are all negative.

e Block - a block refers to several nearby rectangles. When having
similar colors, the rectangles in a block indicate similar climate
conditions in the years represented. A special type of block is
sub triangles, which represent stable and consistent changes in
the covered years. The example in Fig. 6d reveals that the
temperatures in 1987 and 1988 are almost equal, because the
change rates from other years to these two years are almost the
same (see the small block), and the selected sub triangle shows
that the overall warming started in the mid-1980s.

e Hypotenuse - each triangle may be considered a number of
incremental triangles started from a single rectangle and thus has
multiple hypotenuses. The hypotenuse increases from inside to
the longest for the entire triangle. Each hypotenuse indicates a
year-to-year change of N-years average change rate, where N is
the hypotenuse’s ordinal, as in Fig. 6e. For example, the Ist
(longest) hypotenuse represents the continuous year-to-year
temperature change from 1981 to 1990, and the 2nd hypotenuse
indicates the year-to-year change of 2-years average change
rates. As the increase of the ordinal, occasional changes in that
period are averaged out such that the overall state becomes
clearer. The shortest hypotenuse having only one rectangle
indicates the average change rate over the entire 10 years. Fig.
6e reveals that the overall temperature had risen in the 1980s,
while average change rates in the 1980s were about 0.2~0.3.

5.2 Rotating Triangles

Although the time-series triangle can be used to detect the temporal
patterns of a station, in many cases one wishes to know the overall
change of an area. We therefore construct a radial layout like a disc
by aligning the triangles representing multiple stations around a
center (see Fig. 7b), through which users could observe and compare
climate changes of the stations. We also associate a time series plot
with each station. When the user clicks on a triangle, a linear
regression analysis is performed on the clicked station, and the
regression line is drawn in the time series plot, as shown in Fig. 7c.
Users can also add breakpoints to the time series by selecting the
CheckBoxes under the time axis, and view the regression line of
each individual interval. Fig. 7c shows an example of regression line
with 4 breakpoints (1984 and 1985, while 1981 and 1990 as the start
and the end years are selected by default). By observing the fitting
degrees of the regression lines, the user could immediately view the
homogeneity of each interval and choose a more accurate division
solution having the smallest residuals over all the intervals. Such an
interactive support could significantly improve the precision of
regression analysis. We also provide a toolbar for the user to select
stations and manipulate the time series plot (see Fig. 7a). Comparing
with traditional time series analysis methods for meteorological data,
our method could interactively show the analysis process and help
users quickly grasp the change trends of any temporal intervals.

6 ANOMALY DETECTION SCATTERPLOT

Apart from the global climate change trend, local abnormal cases are
also the research hotspots. For example, though the air temperature
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in China has been increasing since the 1950s, Sichuan province has a
significant downward trend, which has inspired the scientists’
interests. Therefore we need a specialized tool to clearly show the
abonormal cases among all the stations during the entire range based
on a flexible anomaly detection model.
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Fig. 7. (a) Toolbar for selecting a cluster in the Global Radial Map
(not shown here) and for operating the time series plot. (b) A Time
Series Disc. (c) The interactive time series plot for a selected station.
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Since a matrix illustrating the climate change rate between any two
temporal points of a station has been constructed in a triangle (lower
triangular matrix), it is convenient to use the matrix as the
foundational data structure. A similar method, extracts the similarity
matrix to detect the temporal similarity in field data [9]. Any slice of
each triangle, such as row, column or hypotenuse, can be selected as
a high-dimensional vector. We use the Principal Component
Analysis algorithm (PCA) [21] to map a corresponding slice in all
triangles to a point in two-dimensional Cartesian Coordinates. To
reveal the correlation between a spatial dimension and its PCA
projection, we provide a box query and when selected, and the
Global Radial Map automatically highlights the selected stations in
the ScatterPlot, as shown in Fig. 8. Through this visualization, one
could easily identify outlier stations and also observe similar climate
changes among nearby points in the scatterplot.

D1 D2 D3 D4 D5 D6 D7 D8 D9

1981-1982 1982-1983 1983-1984 1984-1985 1985-1986 1986-1987 1987-1988 1988-1989 1989-1990

Cle—
Box Query

Progress bar for
adjusting scale

Fig. 8. Anomaly Detection ScatterPlot based on PCA. A hypotenuse
slice is selected as the 9-Dimensional vector of each station for

mapping.

7 EVALUATION

This section reports our evaluation of Vismate through two case
studies in different spatiotemporal scales.

7.1 China Surface Data for International Exchange

China surface data for international exchange contains the long-term
observation records of representative 206 stations distributed
throughout the country. Within the China meteorological observation
network, these stations could automatically and continuously obtain
23 types of meteorological attributes on the land surface. The dataset
covers 1951-2012, containing about 4 million daily average records,



135000 monthly average records and 47000 yearly average records.
The entire set has been checked for consistency by the
meteorological authority, and thus is reliable to use.

We first divided China into 7 areas using the customary
geographical division method in climate studies, and assign a color
to each area, as in Section 4.1. Monthly average data and yearly
average data are used, as climate refers to long-term and macro
meteorological conditions. If a microscopic meteorological

phenomena needs to be analyzed, daily average analysis is also

supported by our approach.
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Fig. 9. The winter climate change in China during the period of 2001-
2012. (a) The parameter selection bar. (b) Most of the stations are
in the selected cluster ring showing a slowly rising trend. (c) A
reddish ring and a bluish ring in the Time Series Disc represent a
minima point and a maxima point respectively, and (d) the time
series plot also proves this finding.

711 Verifying the Existing Conclusions

To test the effectiveness of Vismate, we first verified a few existing
conclusions that had been proven. Using the example of Fig. 1, the
interval from1975 to 1989 is recognized as the period when China's
climate change happened. We divided the stations into eight clusters
according to the temperature change rates using the K-Means
algorithm. Two of the clusters have decreasing trends, while others
have obvious increasing trends, indicating an overall warming trend
during that period. When selecting the cluster ring 6 (second outmost
ring) that has a decreasing trend, we found that the all the stations in
Sichuan province (highlighted in green area) had distinctive
decreasing trends, exactly as reported in Ren et al. [37]. By
visualizing the time series of this cluster containing most of the

stations using a Time Series Disc, we found that the stations near the
centers were all reddish, indicating a continuous temperature rise.
This is consistent with the conclusion that the national warming
began in the mid-1980s, and there was no significant climate change
trend before then [37]. Many other conclusions can also be found
using Vismate, such as, climate warming continues in the 1990s,
1998 is the hottest year in history, and the temperatures rise in the
winter is more severe than in other seasons.

71.2 Interesting Findings

We first used month average records to analyze the overall climate
change in the winter during the period of 2001-2012. When all the
stations were mapped on the cluster rings, spatiotemporal patterns
were clearly shown. In Fig. 9b, the reddish ring represents the
selected cluster, and all the stations in this cluster are also
highlighted in the map, showing that this cluster contains most of the
stations, except Northeast China and the northern part of North
China. An interesting finding is that all of the rings, except the
selected one, reveal various degrees of decline trends, which is
different from our expected results. We thus used the corresponding
Time Series Disc to obtain a detailed view.
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Fig. 10. Seasonal climate changes during the period of 2001-2012.

Fig. 9c displays the time series analysis of Cluster 6 containing
most of the stations. Despite a large number of the stations in this
cluster with little room to clearly display each small triangle,
temporal patterns can still be observed. There are two circles, warm
colored and cool colored, representing a minima point and a maxima
point respectively, using the “Row Pattern” (See Section 5.1). By
mouse interactions, we found the corresponding two years being
2005 and 2008. We also randomly selected other stations and viewed
their time series plots, which also showed the same results, as in Fig.
9d. Similar patterns can also be found in other clusters. Therefore we
drew the conclusions that temperature continued to rise in the 2000s,
yet since 2010, the temperature changes have been showing a
downward trend. Climate researchers provided their interpretation:
the downward trend in recent years cannot change the fact of global
warming, and are only viewed as a normal fluctuation.

Seasonal climate changes are also of interest to researchers.
Although the seasonal change patterns before 2000 have been
published [45], few have analyzed the seasonal variation patterns in
recent years. To fill this gap, we used Vismate to visualize the
temperature anomalies in different seasons, as shown in Fig. 10.
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Warming trend in the winters was very strong, especially in
Northeast China (see the dark red sectors in Fig. 10d). Spring and
autumn also had obvious warming trends, and in East China such
trend was even more obvious than in the winter. The warming trend
in the summer was the weakest. We found that the overall seasonal
variations in the 2000s were the same as the prior years. Climate
academics confirmed our findings by stating that seasonal climate
changes have stable characteristics that do not suddenly change.

We selected the “hypotenuse slice” for each station as an 11-
Dimensional (2001-2012) vector, and used the Anomaly Detection
ScatterPlot to find the stations having abnormal year-to-year climate
changes. As shown in Fig. 11a, there is a station in Northeast China
(blue) far away from other mapped points. We selected this station to
view the corresponding time series plot (Fig. 11b), and found that
this station had an opposite change process (2008 had a minima point
and 2005 had a maxima point). This example demonstrates the
effectiveness of Vismate in finding unusual cases.
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Fig. 11. (a) Anomaly Detection ScatterPlot with an outlier. (b) The
corresponding time series plot.

7.2 Global Historical Climate Network (GHCN) Data

The Global Historical Climatology Network (GHCN) temperature
dataset is one of the most important datasets for the study of the
world’s historical climate changes. This dataset is gathered from
over 7000 meteorological observation stations throughout the world,
which have different start years and end years from 1701 to 2010.
Because this dataset only contains records before 2010, and few
(only 15.4%) stations have records during the 2000s, we report our
findings during the period of 1981-1989 as in Fig. 1, which also
serves to compare the global climate changes with China’s changes
during the same period. We selected monthly average records of
December as our analysis objects to demonstrate the effectiveness of
Vismate. To accommodate large amounts of stations, we made
several representational changes to the Global Radial Map, as
described in Section 4.5.

We divided all the stations into 9 clusters (5 warming and 4
cooling), as in Fig. 12a. By viewing the station distributions on each
ring, we found that global warming was much stronger in Asia than
in other areas of the world, because the stations in China are all red
(see Fig.12c), while only the stations in the northwest of America are
red (see Fig. 12b). We also observed that the global warming started
in the 1980s, which was consistent with the situation in China. Most
of the stations in China had rising trends, indicating a stronger
warming change in China than the global average change, as in Fig.
12c. The variations in the populated Northern Hemisphere were
higher than in Southern Hemisphere, demonstrating that human
activities caused climate changes to some degree [45]. However,
North America was an exception, in which most stations had cooling
trends except in the northwest. Surface Temperature Analysis system
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[55] of Goddard Institute for Space Studies (GISS) was used to
verify our findings. We selected the same temporal interval, and the
model-based system outputs the same result as what Vismate showed,
as in Fig. 13.
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Fig. 12. The Modified Global Radial Map. (a) The climate changes of
North America during the period of 1981-1989. (b) North America in
a higher scale. (c) A general warming trend in China.

7.3 Expert Review

We have conducted an expert review with fifteen experts from the
National Ocean Technology Center and Naval Marine
Hydrometeorology Center participated in our evaluation. The
selected experts have different disciplinary backgrounds, and are all
members of the "Investigation into the Effects of Ocean-Atmosphere
Interactions on Global Climate Change" project. Four of the experts
are female, while others are male. The ages of most experts are
between 30 and 50 (one under 30, and two over 50), and the average
age is 37.93.

We first explained our approach and the prototype system to the
experts. After getting familiar with the system, they were asked to
complete our questionnaire by providing scores between 0 and 10 on
seven aspects: aesthetics, visual design, interaction, learnability,
performance, functionality, and scalability. We did not impose the
time limit, yet every questionnaire was completed within two
minutes. Table 1 shows the statistical results of the expert review.

The results show that the average score of aesthetics is the highest
and the variance is also the smallest, since almost all the experts
liked the design of graphical user interface and visualization. The
visual design aspect was also scored relatively high, because most of
the experts believed that the visual design of the three views were
suitable for analyzing domain tasks, and many patterns could be
found using the system. All the experts were satisfied with the



scalability aspect of our system, because our approach is generic and
applicable to the study of climate changes in other parts of the world,
and can accommodate almost any number of observation stations.
Furthermore, the experts believe that our techniques are also
applicable to many other fields, such as ocean, air quality,
earthquake, etc., in which fixed observation stations are widely used
to automatically collect long-term data. In particular, the correlations
among the three views won praises from the experts. However, two
experts with computer science backgrounds pointed out that the
response time of map operations was slower than the existing GIS
platforms, which affected the score of the interaction aspect.

Table 1. Expert Review Result

Factor Highest Lowest Average Variance
Aesthetics 10 9 9.53 0.27
Visual Design 10 7 8.33 0.52
Interaction 10 6 7.93 1.07
Learnability 9 5 7.07 1.35
Performance 8 6 7.53 0.41
Functionality 9 7 7.87 0.41
Scalability 10 7 8.27 0.64

Although the effectiveness of the three views was confirmed by
the experts, several experts advised us to add more professional and
visual functions to the system. They even expressed strong interest to
see our enhanced version as soon as possible, which was measured
by functionality aspect. To improve the performance, the system
contains a pre-processing process, i.e. all the time-consuming
algorithms, such as clustering, are done before the system starts.
System operations can therefore be responded in real-time. After
optimization, the data pre-processing time has been reduced to less
than 30s. However, the score of performance aspect is not as high as
we expected, mainly because the experts overlooked the amount of
the data manipulated by the system and expected a high system
performance. The learnability aspect received the lowest score and
highest variance, implying that not everyone can quickly learn the
tool. This may be because the learning time is too short for them to
get familiar with the system and operate smoothly. Using two
different representation schemes in the Global Radial Map may have
also hindered quick learning.

The experts also pointed out an important limitation of our
approach: “climate change is a complicated process, affected by
many factors; although what we discovered have been verified, we
cannot guarantee the correctness of our future findings without
considering other factors”. However, all the existing models output
results with inherent uncertainties, because of our incomplete
understandings of many physical processes and the fact that not all
the meteorological physics have been scientifically modeled. Even
opposite conclusions were often drawn by different meteorologists
and organizations. For example, as three of the most important
climate change study organizations, NASA Goddard Institute for
Space Studies (GISS) and NOAA National Climate Data Center
(NCDC) consider 2005 as the warmest year, while based on
HadCRUT dataset compiled by Hadley Centre of the UK Met Office,
1998 is viewed as the warmest year [13]. So the climate science
community often relies on multi-approach ensembles to mitigate the
uncertainty that any single model might have. For instance, IPCC
used multi-model ensembles to present its assessment of future
climate changes [4]. We therefore hope that Vismate capable of
objectively visualizing actual observation data can be an effective
alternative for experts to verify the conclusions generated by other
methods. Vismate may also guide experts in more in-depth studies
based on the patterns found in our approach, as a mechanism for
hypotheses generation [11].

In summary, Vismate received very positive feedback from the
domain experts. Our findings were beyond their expectations, and
they never thought of applying information visualization techniques
in the traditional meteorology field. Although only air temperature
was analyzed in the paper, other attributes can also be visualized in a
similar fashion.
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Fig. 13. Goddard Institute for Space Studies (GISS) Surface
Temperature Analysis system showing the same changes as in
Vismate.

8 ConNcLusioON AND FUTURE WORK

This paper has presented a comprehensive visualization approach
called Vismate for climate change studies. New visualization
techniques have been developed and integrated into our approach.
Vismate has been used to analyze the China Surface Data for
International Exchange and GHCN data. Having verified the patterns
found in such two datasets, we consider our approach to be effective
and useful in real-world scenarios. Furthermore, our approach can be
considered general for the visualization of different domain datasets
generated by a large number of observation stations, such as ocean,
air quality, earthquake, etc.. In the future, we plan to improve
Vismate in two aspects. First, we plan to support NetCDF grid data
[38] which has been widely used in climate studies. Second, we will
utilize the global Re-Analysis data to compare the ocean climate
changes with that on the land.
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