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Fig. 1. Our system consists of two parts: a sketch-based query and multiple coordinated views. a) The Flow Comparative View
shows the variation of traffic flow of two directions over time. b) The Velocity-and-Distance view shows the relationship between a
trip’s average speed and distance. c) The Flow-and-Velocity View shows the status of transportation distributed on a road. d) The
Topology View shows the ratio of different flow and is also used as a topology filter. e) The Flow Density View shows the density of
traffic flow distributed on a road.

Abstract— Transport assessment plays a vital role in urban planning and traffic control, which are influenced by multi-faceted traffic
factors involving road infrastructure and traffic flow. Conventional solutions can hardly meet the requirements and expectations of
domain experts. In this paper we present a data-driven solution by leveraging a visual analysis system to evaluate the real traffic
situations based on taxi trajectory data. A sketch-based visual interface is designed to support dynamic query and visual reasoning
of traffic situations within multiple coordinated views. In particular, we propose a novel road-based query model for analysts to
interactively conduct evaluation tasks. This model is supported by a bi-directional hash structure, TripHash, which enables real-time
responses to the data queries over a huge amount of trajectory data. Case studies with a real taxi GPS trajectory dataset (> 30GB)
show that our system performs well for on-demand transport assessment and reasoning.
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1 INTRODUCTION

Traffic jams, unbalanced transportation capacities, and frequently oc-
curring accidents are major problems for the road networks in modern
cities. Many of these issues can be attributed to the improper plan-
ning, maintenance and traffic control. For example: 1) the density
of secondary roads is too low to match that of trunk roads, which is
caused by insufficient road network planning; 2) traffic flow are pro-
duced by vehicles with a large variety of moving distances and speeds;
3) roads and crossroads have mismatched transportation capacities; 4)
the functional division of roads is too ambiguous [33].

Conventionally, qualitative and quantitative approaches [15] are
employed to assess traffic situations on roads. In qualitative assess-
ment, analysts examine the main factors that influence traffic to judge
whether a road meets the design requirements and is adequate for its
current traffic flow. On the other hand, some traffic simulation product-
s (e.g., TransCAD [4], Cube [8] and EMME [23]) utilize quantitative
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empirical models for road network analysis and evaluation. To study
traffic situations in a large-scale region, analysts have to manually ad-
just many parameters in a trial-and-error process.

Data-driven methods have attracted much attention due to the rapid
development of sensor and data transmission techniques. One popular
approach is to use GPS-trajectory data collected by cars, which sample
road conditions in a very short time interval [16]. The trajectory data
represents real traffic situations, from which the statistics of traffic flow
can be extracted and city-wide travel patterns can be discovered [11].
Researchers can discover city regions with different functions based
on human mobility patterns and points of interest (POIs) [42], detect
regions with salient traffic problems to evaluate the effectiveness of
road layout by abstracting features from taxi traces [44], and predict
future movements of objects using historical trajectories [46]. How-
ever, few existing work are designed for the analysts to complete their
typical tasks which required interactive transport assessment.

The challenges of interactive assessment are two-fold. First, query-
ing a huge amount of trajectories on arbitrarily chosen roads in a c-
ity can be quite time-consuming. Thus, a highly efficient scheme for
trajectory data organization and query is needed. Second, discover-
ing and analyzing potential problems on roads should be dynamic,
analyst-driven, and situation-aware. Visual feedback and interaction
are required in this process. To overcome the challenges, in this paper,
we present a visual analysis system for analysts to evaluate real traf-
fic situations based on taxi trajectory data. We propose a road-based
query model constructed on TripHash, a new bi-directional linked
hash-based trajectory data structure. TripHash is specifically suitable
for fast queries and computations in local areas. Moreover, we design a
sketch-based dynamic query tool that facilitates interactive and visual
study of road situations and vehicle trips. Our system employs multi-
ple coordinated views to support on-demand assessment. In summary,
the contributions of this paper are as follows:

• A dynamic road-based trajectory query model that facilitates
on-demand spatio-temporal queries of trajectories without using
any textual query language. Furthermore, it supports complex
topological queries [12], namely enter, leave, cross and cover of
roads.

• A bi-directional linked hash index scheme over taxi trajecto-
ries that enables real-time query and response. One unique fea-
ture of this scheme is that free-style queries in narrow and irreg-
ular roads are made easy.

• A visual analysis system that incorporates domain expertise
for transport analysis and traffic assessment in a situation-aware
way.

The rest of this paper is structured as follows. Section 2 introduces
basic concepts of transport assessment and summarizes the related
work. We describe the problems and analyze requirements of trans-
port assessment in Section 3. In Section 4, we give an overview of
data preprocessing and some assumptions. Then a road-based query is
described in Section 5 and Section 6. Section 7 presents several case
studies using a real dataset. Finally, we conclude our work in Section
8.

2 PRELIMINARIES AND RELATED WORK

2.1 Related Concepts on Transportation Planning

According to the national standard for transportation planning and de-
sign [27], urban roads are classified into four categories.

• Expressways are designed for long-distance transportation and
permit a high speed limit. They connect urban districts with sub-
urban areas with widths of 40-60 meters.

• Trunk roads connect main districts in urban regions. Their
widths are typically 30-60 meters.

• Secondary roads function as trunk roads in local regions, which
are supplementary yet essential parts of the road network. Their
widths are typically 20-30 meters.

• Branch roads connect residential communities and villages to
secondary roads. Their widths are typically 12-16 meters.

For the sake of clarity, we use the term road to describe a street of
a road network. A subdivision of a road is called a road segment. For
megacities with a population of more than 2 million, the designated
speed of the four kinds of road are 80, 60, 40 and 30 kilometers per
hour respectively [27].

The place where two or more roads intersect is called an intersec-
tion. The capacity of an intersection denotes the maximum traffic vol-
ume in the crossing traffic flow. Capacity is influenced by several fac-
tors: the shape and area of the intersection, the number of lanes, the
widths of roads, as well as the traffic control measures. These factors
complicate the calculation of the traffic capacity of an intersection. We
can make assumptions about certain conditions and do the calculations
by means of theoretical reasoning methods [26].

2.2 Visual Analysis of Trajectory Data

A variety of techniques and methods adapted from cartography and
scientific visualization are studied and applied in trajectory data visu-
alization. Andrienko et al. [1] summarize characteristics of movemen-
t data and develop visualization methods for moving objects, spatial
events and spatial and temporal distributions. Another example [29]
takes time as an independent axis and displays trajectory changes with
location and time in 3D space. Trajectories can be convolved to gener-
ate Kernel Density Estimations (KDEs) to give an overview at various
levels of detail. Willems et al. [40] visualize vessel traffic at two levels
of detail to reveal both global patterns, like traffic lanes, and local pat-
terns, such as anchoring zones. Scheepens et al. [32] use density maps
to show an aggregated overview of data with multiple attributes. Ex-
isting tools provide pleasing visualizations, but few of them filter and
highlight relevant location traces on the roads. For instance, Trace-
Viz [6] aims to filter trajectories with high similarity scores by com-
puting the proportion of brushed points and traced points. In this work,
we design a brushing tool that considers not only the proportion, but
also the orders of brush points and trace points.

Visual analysis of trajectory data generally falls into two categories:
macro-pattern analysis and micro-pattern analysis. In macro-pattern
analysis, global phenomena, like human behavior, are presented in a
large area, such as a city or a district. As for micro-pattern, trajec-
tory data in a local area is studied to discover detailed patterns on a
road or an intersection. Song et al. [36] analyze the Japanese vic-
tims’ movement behaviors while seeking shelter after the leak of the
Fukushima nuclear plant. Liu et al. [19] discover diversity patterns
of traffic after investigating trajectory data in circular areas. Wang et
al. [43] extract complex traffic jam information from global trajectory
data and analyze the propagation of traffic jams at specific road seg-
ments. Guo et al. [17] study micro-patterns and abnormal behaviors
of traffic flow at intersections by analyzing a dataset at one intersec-
tion. Chu et al. [7] develop a methodology to discover and analyze the
hidden knowledge of massive taxi trajectory data by transforming the
geographic coordinates to street names and applying topic modeling
technique. T-Watcher [31] presents traffic status from overview to de-
tail in three views: a region view, a road view, and a vehicle view. In
this paper, we adopt a micro-pattern analysis of traffic flow in order to
assess the rationality of transportation planning.

2.3 Query of Trajectory Data

Previous methods for trajectory data query can be classified into three
categories: point query (P-Query), region query (R-Query) and trajec-
tory query (T-Query) [24]. P-Query locates the trajectories that pass
through a specific location. R-Query aims at finding trajectories that
pass through certain space or time intervals. T-Query detects trajecto-
ries that share similarities with a given set of trajectories. Ferreira et
al. [13] provide a visualized query tool that enables trip record queries
with space, time and other attributes chosen by users. However, this
approach is designed for queries over origin-destination (OD) data in
large areas, not for trajectories on roads. Although nanocubes [25] can
be used to explore spatio-temporal datasets in real-time, it is mainly

104



designed for large region queries. Our approach allows analysts to
freely select roads as constraints to query similar trajectories. It is ba-
sically an R-Query based method and differs from existing solutions
in that it can handle spatial regions consisting of consecutive and ir-
regular areas.

Native-space indexing is the mainstream method for indexing
spatio-temporal data, using approximations such as minimum bound-
ing rectangles (MBRs), octagons and regular grid cells [30]. To
query trajectories over a spatial division, a high resolution spatial grid
can provide better matches at the expense of more computational re-
sources.

There are two major indexing methods in accordance with trajec-
tory data structures. Multidimensional index methods, for example,
3D R-Tree [39], STR-Trees [24], and HR-Tree [28], extend from R-
Tree [18] and construct MBR based on trajectory clustering. Other
approaches divide space into grids and build a time index for each grid
point, e.g. SETI [5] and MTSB-Tree [47].

For large trajectories, systems like SETI and TrajStore [10] leverage
segmentation to reduce the size of bounding boxes. Segments that
are spatially close will be saved in the same disk partition so as to
accelerate the query processing. However, both of them do not provide
topology queries and are expensive for searching trajectories on a road
segment. The implementation of R2-D2 [45] gathers points close to
each other into the same cell and constructs a hash table within the
cell to achieve a fast query of trajectory points in its neighborhood.
We extend the indexing method of R2-D2 by adding the topological
information of the trajectories and roads into the hash table to enable
trajectory queries along connected road intervals.

3 PROBLEM STATEMENT AND TASKS

3.1 Data Description

Trajectory data used in our system was recorded by 8,386 taxis e-
quipped with GPS devices in a time span of one month in Feb. 2012.
The taxis travel in Hangzhou, a modern city in China with a popula-
tion of 7 million. The number of GPS records is about 30 million and
the total amount of data takes up to 80 GB. The attributes of a vehicle,
including velocity, geographical position, availability and time, were
sent to the data server by each GPS sensor via a GPRS link every 20
seconds. We form the trajectory of one taxi by tracking its consecutive
GPS records. With no passengers onboard, drivers usually drive s-
lowly searching for them, therefore, we exclude these records because
they do not exhibit the real traffic status.

We extract the road network information from OpenStreetMap [22],
a free geospatial data service. It contains roads and intersections data.
All roads in the data set are defined in vectors. We reconstruct road
segments in the road network data, such that two road segments only
intersect at their end points.

We also use the city map and divide the urban area of Hangzhou into
a rectangular grid. Each cell of the grid is represented by cell(x,y),
where x and y are relative coordinates from the top left.

3.2 Traffic Context

The basic element of our approach is a trip, which denotes the entire
route of a taxi travelling with passengers from the source to the desti-
nation. In other words, a trip starts when a passenger gets in the taxi
and stops when the passenger gets off. We define a trip and related
terms as follows.

Definition 1 (Taxi Trip): A trip Γ = (tid,Oi, p1, p2, . . . , pk), where

tid is the identification of the trip, and Oi is the ith moving tax-
i. p j(1 ≤ j ≤ k) is the jth GPS point of Γ, which consists of a
geospatial coordinate set, a timestamp, and a state of occupation, i.e.
p j = (x,y, t,s). In this work, the state of occupation indicates that pas-
sengers are onboard in valid trips.

Definition 2 (Flow): Flow is the number of vehicles passing a refer-
ence point per unit of time, e.g., the number of vehicles per hour.

Definition 3 (Density): Density is defined as the number of vehicles
per unit length of a roadway at a timestamp.

3.3 Problem Statement

This work is carried out in collaboration with a transportation assess-
ment expert. He describes four main tasks.

Q1: Analysis of road hierarchy

Even though transportation planning has considered potential traffic
growth, traffic flow in a megacity is typically overloaded. An imper-
fect design of the road hierarchy may lead to an unbalanced ratio of
trunk roads to secondary roads, which may cause traffic problems. The
national standard [27] specifies the criteria of density and quantity of
lower-tier roads and nodes, but there exist excessive numbers of ve-
hicles in trunk roads in daily life. At locations where heavy traffic
jams happen, there may be inadequate roadways that connect different
functional regions in a city.

Q2: Analysis of overlapping traffic flow

There are traffic flow in both rapid speed and normal speed over
long-distance or short-distance trips. If both traffic flow overlap heav-
ily, traffic jams would happen. Essentially, our approach leverages the
location, speed and availability information of taxis recorded by GPS
to determine and study road-based attributes of the traffic situations.

Q3: Analysis of road and intersection traffic capacity

The transportation capacity refers to the maximum traffic flow ob-
tained on a given roadway, if all available lanes are used. It is usually
measured in flow. In study of traffic capacity, the intersections play
a major role for two reasons. First, some intersections may divide
a road into several parts with quite different traffic capacity because
many cars turn into or out of this road at the intersections. Second,
if the capacity of an intersection is lower than that of major roads,
drivers will suffer from the mismatch of capacity between roads and
intersections.

Q4: Analysis of opposite directions

Most roads have two directions with strong inner connections, and
each direction sometimes has dramatically different traffic flow. Dur-
ing the morning rush hour, traffic lanes, whose directions are from
suburbs to downtown, will have a high transportation flow, while the
other half is highly unimpeded. An opposite scenario can be found
during the evening peak. Once the imbalance is located, traffic control
methods, such as tidal lanes, can be engaged to ease the situation.

3.4 System Design Constraints

To tackle these problems, an efficient data analysis system with a dy-
namic data query scheme is needed. Specific capabilities and their
constraints are as follows:

T1: Integrate heterogeneous datasets. A set of heterogeneous data
is involved in the assessment process including trajectory coordinates,
the velocity of a taxi, availability, road networks and spatial grids. A
well-designed data model is required to incorporate all these factors to
handle the tasks.

T2: Build an effective data index. There are a large amount of roads
in a big city, as well as a huge amount of trajectories. The evalua-
tion should be performed in real-time and with immediate visual feed-
back. Therefore, an appropriate data index for the trajectory database
is needed. In addition, a visual interface is preferred to reduce analyst-
s’ workload in locating, exploring and analyzing the data.

T3: Dynamic query on road sections. Trajectories on road sections
are the foundation of transportation assessment. With consideration
of real life situations, road sections of irregular shapes should be used
as query condition. Analysts should be allowed to set the coordinates,
shape and width of road sections in an intuitive fashion.

T4: Distinguish different traffic flow. On one hand, as in Q4, traffic
flow in two directions may be totally different. On the other hand,
taxis entering and leaving a road hold different types of traffic flow.
We need to identify all of these traffic flow to provide analysts with
more detailed information.

3.5 Work Flow

Our work consists of three steps: data preprocessing, road-based
queries and visual analysis and reasoning. Preprocessing is conducted
off-line. We extract trips from raw GPS data and store them in a 2D
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Fig. 2. The conceptual framework of our system.

hash structure. In the second step, analysts use a sketch-based visu-
al query and a road-based query model to get results in real-time. In
the third step, analysts can further make dynamic reasoning of traffic
situations. Fig.2 illustrates the pipeline of our system.

We explain data preprocessing in Section 4, road-based queries in
Section 5, and visual analysis and reasoning in Section 6.

4 DATA PREPROCESSING

The raw GPS recorded data is noisy, incomplete and erroneous.

4.1 Data Cleaning

The raw data is cleaned through the following processes:

• Delete irrelevant data. Some collected points actually mark lo-
cations outside the region of interest (e.g. the city).

• Delete abnormal points. If the distance between two successively
time-stamped points is larger than a given threshold, e.g., the
implied speed is larger than the highest speed limit (80 km/h),
they are regarded as abnormal.

• Delete points with time intervals longer than 10 minutes. The
reason is that 10 minutes is too long to interpolate.

• Delete GPS points with a state of empty. We only consider those
trips containing passengers.

After cleaning, the raw data is reduced from 80 GB to 38.2 GB.
We use a simple out-of-core algorithm to prefetch data from disks and
trips recently queried will be loaded into memory.

4.2 Trip Segmentation

Trips are created by linking cleaned GPS points. It is typical that the
time intervals between two consecutive GPS points fall in a range of
15 to 25 seconds. If there is a larger time interval, a linear interpolation
is performed along the matched road to add samples. In practice, the
ratio of added samples is less than 2%.

4.3 Map Matching

Matching the trajectory data to the road network is essential for query
and analysis. There are a number of studies on matching GPS samples
on a digital map. These approaches can be generally classified into
three classes: local/incremental methods, global methods, and statisti-
cal methods. The local/incremental methods try to find local match of
geometries. When matching a new position, it only considers a small
portion of the trajectory that is close to the position. In this work, we
adopt Greenfold’s [14] approach to match samples on most parts of
the map except intersections, since it works well on a high sampling
rate (e.g. 20 seconds/point). When a taxi turns at an intersection, t-
wo consecutive sampling points may belong to two roads. Directly
connecting them would create a mismatch of the trajectory over the
intersecting roads. To address this challenge, we calculate the loca-
tions of intersections in the city from the road network data provided
by OpenStreetMap. After obtaining the coordinates of intersections,
these coordinates are used to interpolate points when a taxi enters an
intersection. Such an approach helps create a closely matched trajec-
tory by minimizing the deviation of trip points from roads.

5 ROAD-BASED QUERY

To fulfill the analysis tasks, we design a query model and an efficient
index scheme for dynamic querying of trips on road networks.

5.1 Road-based Query Model

A typical search on sets of taxi trips is based on a given road section
and a time period, e.g. finding all trips passing a given road between
6:30 a.m. and 8:30 a.m. in a week. Our new query model is based on
road maps and differs from conventional searches conducted by query
languages over spatial and temporal databases. Definitions within the
query model, namely road-based query model, are given below.

Definition 4 (Region of Query): A region of query, R, is a collection
of grid cells on the map, which approximates a road segment.

Definition 5 (Topology): A topology mode of trips, ω , describes the
relationships between moving objects and roads, such as enter, leave,
cover and cross, as shown in Fig.3.

The topology mode is an important indicator of the status of road
sections. For example, if there are more cars leaving than entering a
road in a time period, the traffic pressure of this road is relatively low.
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Fig. 3. The trips passing a road exhibit four topology modes.

Definition 6 (Road-based Query): A road-based query Q(Γ, R, ω , t)
performs a search on a given spatial region R (road segment) and a
temporal interval t, and returns a corpus Γ consisting of trips, Γ j , that
exhibits a topology mode ω during t. Here, Γ j ⊂ Γ, R×Γ j ∈ ω .

The road-based query is different from the conventional R-query
for two reasons. First, a region of the road-based query is typically an
irregular-shaped road segment that consists of consecutive and small
areas. However, the R-query involves a large and regular area, e.g.
one city block or more. Second, the road-based query includes four
topology modes. In contrast, topology modes are generally neglected
in the conventional R-query.

5.2 Index Scheme

The general idea of indexing trips is to constrain the trips in the road
network. We further design the Trip Grid (T G) as a container which
stores recent trips. We use this grid to divide the area of interest into a
set of rectangular regions, namely cells, with fixed width. GPS points
of trips are projected to the grid. The size of a cell is determined by
both the width of roads and the average speed of taxis, and will be
explained in Section 6.1.1. We use cell(x,y) to denote a cell at the
position (x,y) in the grid.

When a trip passes a cell(x,y), GPS points located in this cell will
be inserted into T G(xi,yi). We employ a hash table, called TripHash
(see Fig.4) to facilitate an efficient search of trips over T G. Data s-
tored in the TripHash of each cell is indexed by a key, composed of
a moving object ID Oi and a timestamp t. It means Oi passes this cell
at time t. The value of the hash index in the TripHash includes three
parts: the GPS point ID pid, the coordinate of this point’s previous
point in the trip, and the coordinate of its next point. In this way, we
store all the moving objects’ trips in the TripHash table, and all points
of a trip are bi-directionally linked. Knowing a trip ID Oi in cell(x,y)
at time t also enables us to retrieve the taxi’s consecutive segment or
previous segment of a trip. This is convenient for querying a fragment
of a trip or the holistic trip. To achieve higher performance, we use a
B+ tree to index timestamps for temporal query.
Example 1. In Fig.4, Oi starts from cell(3,2) at time t, and then moves
to cell(5,4) at time t+1. We insert a record into the TripHash of cell(3,
2) with a key (Oi,t) and a value [pid, NIL, (5,4)]. We set previous
pointer as NIL because cell(3,2) is the first cell of this trip. Similarly,
we insert the records into cell(5,4), cell(5,7), and cell(7,7).

5.3 Trip Query

Here we describe how to retrieve all vehicles in enter, leave,cover and
cross topology modes on a road. If Oi has a sub-trip Γ j that matches
the given road segment R in a time window τ = [tbegin, tend ] and meets

a topology mode ω , then Oi is contributed to evaluating R. We collect
all valuable trips in different topology modes to analyze the traffic flow
on a road.

In addition, there are two schemes for retrieving trips which pass
a road segment. The first one returns the GPS points that are in the
underlying road, as indicated in Algorithm 1. The second one returns
points of the entire trips even though they may be beyond the road,
as explained in Algorithm 2. The latter is useful when analysts make
comparisons between long-distance trips and short-distance trips (Q2).

Find Trips In a Road Given a road segment R, a time window
τ and a topology ω , Algorithm 1 returns a collection of trips which
meet the spatial, temporal and topological conditions. First we need
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Fig. 4. The TripHash structure connects trips in bi-directional links.

to scan the TripHash at cell(x0,y0) to query all trips within τ , where
cell(x0,y0) is the first cell of R. We conduct both forward and back-
ward traversals to each trip Γ j, until Γ j no longer exists in R. If Γ j

meets ω , we add it in the result collection Γ. Then we continue to
fetch other trips at cell(xk,yk) in R.

Algorithm 1: FindTripsInRoad

Input: A road segment R = {(xi,yi),0 ≤ i ≤ n}, a time window
[tbegin, tend] and a topology ω

Output: Γ

Γ = Φ;

for i = 0; i ≤ n; i++ do
table = T G[R.xi,R.yi];

find entryset from table during [tbegin, tend ];

for each entry in entryset do
cell = entry.value;

link = Φ;

/* traverse a trip to the tail */

link = link∪ traverse(cell.next);

/* traverse a trip to the head */

link = link∪ traverse(cell.prev);

trip.nodes = link;

if trip = ω then
Γ = Γ∪ trip;

return Γ;

Example 2. In Fig.5, selected cells [cell(j, k), cell(j+3, k)] of a road
are in grey from left to right. Oi is a trip in cover mode, with orange
arrowed lines linking each point at consecutive timestamps. We use
Oi

t to denote the position of a moving object Oi at time t. Oi+1 travels
the road in the opposite direction in leave mode during [t, t+3]. If we
use Algorithm 1 and set the time interval as [t, t+4] with the topology

mode as leave, we get a segment of trip as {Oi+1
t , Oi+1

t+1, Oi+1
t+2}.

The first cell(j, k) is searched in [t, t+4] and only Oi
t is returned.

Then, we search the next point of Oi at cell(j+1, k), Oi
t+1, on the se-

lected road segment and mark it. We continue to traverse the trip of Oi

until the end of time or Oi surpasses the road segment. Although the
first position of Oi is cell(j, k) and the last position is cell(j+3, k), this
trip does not meet the topological leave mode, so we have to release

this trip. Next, we go to the second cell(j+1, k) and find Oi+1
t+2, be-

cause Oi
t+1 has been marked. We traverse Oi+1 in both directions and

it returns {Oi+1
t , Oi+1

t+1, Oi+1
t+2}. Because Oi+1 starts from cell( j+3,k),

one end of the selected segment, and leaves at cell(j+1, k), this trip is
regarded as a valid one. If Algorithm 2 is invoked, the entire trip of

Oi+1, including Oi+1
t+3, will be returned.
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Fig. 5. An example of the look up procedure in Algorithm 1. The se-
lected road consists of grey cells, and two trips are in different topology
modes as well as different directions.

Find Entire Trips This algorithm is an extension of Algorithm 1
for calculating the entire distance of a trip exceeding a road segment.
We have to find all points of a trip passing R. First, we need to execute
Algorithm 1 to find all segments of trips Γ on R. For each trip in Γ, we
get its first point and last point. Then, we traverse the entire trip from
the tail to the head.

Algorithm 2: FindEntireTrips

Input: A road segment R = {[xi,yi],0 ≤ i ≤ n}, a time window
[tbegin, tend] and a topology ω

Output: Γ

Γ = FindInsideTrip(R, [tbegin, tend ],ω) ;

for each trip in Γ do
f c = trip. f irst ;

lc = trip.last ;

/* traverse a trip to the tail */

link = link∪ traverse(cell.next);

/* traverse a trip to the head */

link = link∪ traverse(cell.prev);

trip.nodes = trip.nodes∪ link;

return Γ ;

TripHash is different from the segmentation-based approach, such
as SETI. SETI subdivides trajectories into segments and groups them
into a collection of spatial partitions, then runs queries over just the
spatial partitions that are most relevant to a given query. However,
the spatial partition yields a coarse approximation to the trajectories,
hence a significant runtime is incurred in eliminating the false hits (see
Section 7.1). TripHash is point-based and approximates trajectories
more precisely than SETI. Queries of TripHash are in a local area and
only trajectories on roads will be returned during analysis.

6 VISUAL QUERY OF ROAD-BASED TRAFFIC

We design a visual interface that supports road-based visual query, tra-
jectory data analysis and data-driven transport assessment. We display
traffic flow on each road to accomplish four tasks proposed by the col-
laborating expert in Section 3.3. As shown in Fig.1, the main interface
shows the map and the sketch-based query on the left and the statistical
charts on the right. We first describe the visual encoding schemes for
the interface (Section 6.1). Then we explain how our system supports
dynamic queries and detailed road-based traffic analysis (Section 6.2).

6.1 Sketch-based Dynamic Query

We provide a brushing tool to allow analysts to filter trajectories on a
road. We split the map into a grid of the same size as the trajectory
segmentation. If a road is brushed, the coordinates of grid cells will be
recorded as spatial constraints of a road-based trip query.

6.1.1 Cell Size

It is necessary to optimize the cell’s size ξ in designing the brushing
tool because we want to balance performances of time and space. That
is to say, we make cells as small as possible to reduce unnecessary
query regions; on the contrary, we want to make cells big adequately to
cover the majority of a road in width. The rule is to multiply the taxis’
average velocity by half of the sampling time interval of the trips. In
our GPS dataset, the average speed of a taxi is about 11m/s, and the
sampling time interval is 20 seconds, thus max(ξ ) = (11×20)÷2 =
110m.

On the other side, the maximum width of roads in a city is 60 m. We
adopt ξ = 110÷2 = 55m, for the purpose of covering a road segment
with the brushing tool.

6.1.2 Query Processing

Brushing on Roads We design a brushing tool that allows analysts
to sketch on roads. When a cell of a road is on the stroke, the brush
will be constrained to the road. We set the width of the brush to two
times that of cell size. Three possible positions between the roads and
the grids are shown below. For the cell labeled No.1 in Fig.6, the road
covers most of the cell, while only a small part of cell No.2 is covered
by the road. Cells will be recorded if the distance between the center
of the road (see the dashed blue line in Fig.6) and a cell’s center is less
than 55×√

2÷2 = 38.9 meters. For cell No.3, whether or not it will
be stored depends on the orientation of brushing. If the brush turns to
the opposite direction of cell No.3, its position is not counted. On the
other hand, if the brush stays on the original direction, cell No.3 will
be treated as cell No.2.

Fig. 6. Three relationships between cells and a road while brushing.
The blue line denotes the medial road axis.

Spatial and Temporal Filter When using the spatial filter, a road
segment will be selected and traffic flow on this segment will be high-
lighted. When a temporal filter is used, traffic flow on the road during
a time window will be updated. By using both filters, analysts can
locate the spatial and temporal range.

6.2 Visual Design

To analyze transportation situations on roads, it is desirable to show
trip attributes, geographical and temporal information. For a selected
road, we would like to show the traffic flow in time periods, including
vehicle speed and the amount of vehicles with different speeds. It gives
an overview of whether a road is in a good situation. Then we need to
display the relationship between traveling distance and vehicle speed.
In addition, we want to present the density of traffic flow on a road.
The density measures the total number of vehicles at different parts of
a road. Most roads have two directions with different traffic flows. We
would like to compare the flow on both sides in one view.

Flow Comparative View To illustrate the variation of traffic flow
on a road in a given time period and compare the transportation of
forward and reverse lanes of the same road segment in different time
periods, we implement a flow comparative view by adopting stacked
bar chart (see Fig.1(a)). First, we count the number of vehicles in dif-
ferent speed ranges within a time slot and encode each slot as a colored
vertical bin. Vehicles in the same time slot are stacked in one bin. The
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speed ranges are color-encoded from red to green. We further split the
bar chart into two parts corresponding to the two directions of traf-
fic flow, which are separated by a horizontal line in the middle. The
upper part represents the flow of forward lanes and the lower part rep-
resents the flow of the reverse lanes. The size of the time slots defines
the temporal granularity which is determined automatically according
to the time window (t) being studied. The rules of setting temporal
granularity are as follows:

• the granularity is a week, if t ≥ 14 days;

• the granularity is a day, if t ≥ 28 hours and t < 14 days;

• the granularity is an hour, if t ≥ 4 hours and t < 28 hours;

• else, the granularity is half an hour.

For task Q4, this view can compare traffic situations on roads with
two directions.

Velocity-and-Distance View We design this view to visualize
three important trip attributes, i.e., the distance of trips, the average
speed of trips, and the trips in peak hours and off-peak hours. A s-
catterplot is employed in this view. The horizontal axis represents the
distance of trips, and the vertical axis is the average speed of trip-
s (see Fig.1(b)). We further encode trips in-peak hours and off-peak
hours with different colors on the scatterplot. To reduce visual clutter,
we employ a kernel density estimation (KDE) method. This view is
designed to help experts identify different situations of roads. For ex-
ample, if there are many trip points located at the lower right, the road
is in a bad situation as many trips with a long distance suffer from slow
speed. It is an essential view demanded by task Q1 and Q2.

Flow-and-Velocity View In this view, we mainly consider the traf-
fic flow variations in the spatial dimension. We encode the amount of
trips, speed and the taxis’ positions of a brushed road in a block-based
map (see Fig.1(c)). The block-based map spans from left to right cor-
responding to the direction of the brush over the filtered road. If the
brushed road is not in an east-west direction, it will be rotated to an
appropriate angle. The angle is set depending on the first point and
the last point of a stroke. The width of a block indicates the number
of cars (set as 20) passing a location within a time interval. If there
are 2 blocks at one position, it means that about 40 taxis passing by.
The color represents the average speed of taxis at the place. In this
view, we further encode trips of different topology modes with differ-
ent colors in a line graph below the block map. If one topology mode
is selected, the related lines are highlighted in the line graph. This
view provides information of traffic flow status at each position of a
road, which is essential for the analysis of road and intersection traffic
capacity proposed in task Q3.

Topology View To recognize the characteristics of a road, we rep-
resent the ratios of the trips with different topology modes by four dif-
ferent colors and labels (see Fig.1(d)). Each part of this view denotes
a mode from left to right, i.e., leave, cover, enter, cross. Its width rep-
resents the ratio of trips with this mode among all trips. This view is
designed for the study of traffic capacity for task Q3, since the pro-
portions of traffic flow in different topology modes can reflect how an
intersection affects connecting roads.

Flow Density View This view shows the spatial distribution of traf-
fic flow on a city map. Analysts can find locations where jams tend to
happen easily based on this view. KDE is used to show the density of
traffic flow. The density factor h̄ of a location can be calculated using
the formula:

h̄ =
1

T
∑
T

φ(n) (1)

where T is the given time interval and n is the number of trips passing
the location.

There are two major advantages of our visual system compared with
existing solutions. First, our system is a micro-pattern method and
gives detailed views of traffic flow. By using the brushing tool, our

system can provide a local view of one road or one part of a road.
Statistics are only related to trajectories on the selected road with the
improved resolution. Second, our system can be used to analyze a
large region in iterative exploration. It supports arbitrary selection of
the majority of roads in a city. Interested road segments in any shape
can be brushed as well.

7 EXPERIMENTS

We have conducted our experiments over a large volume of data. In
this section, we first present a performance evaluation by comparing
our query model with SETI and 3D R-tree. Then we perform three
case studies to demonstrate how our method can effectively assist do-
main experts in performing analysis and seeking traffic problems in
Hangzhou, China. The domain expert was trained to use the system
before the analysis is performed in the case studies.

7.1 Performance Evaluation

The experimental platform is an Intel Xeon ES430 2.66 GHz desktop
that is configured with 16 GB of main memory and a 3 TB 7200 RPM
Seagate disk, running Windows 8. We use the real trip data of 500 taxis
in one day with about 0.5 million GPS points. In the experiments, we
use two types of road-based queries: a query of long distances and a
query of short distances in the same time interval.

We use two performance metrics. The first is the overall run
time. Visual analysis systems often require quick responses to experts’
strokes. The second is the memory consumption of an indexing data
structure. Since the volume of the trajectory data is large, we cannot
load all data into memory. The size of an indexing data is a key factor
in prefetching data. We compare TripHash with SETI and 3D R-tree.
We implement SETI and 3D R-tree using the open source XXL [2]
library for better performance. The size of SETI’s cell in the query of
long distances is set much larger than that in the query of short dis-
tances. Fig.7 shows the runtime and the size of indexes for distance of
2 KM and 20 KM. TripHash performs the best of the short distance,
both in terms of the size of the index and the run time. It is exhaus-
tive for SETI and 3D R-tree to search in such a small area. Though
TripHash calls for more space to cache the index in the long distance
query, it provides the quickest query response.
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Fig. 7. Performance comparisons of TripHash, SETI and 3D R-tree

7.2 Case 1: Traffic Jams on Expressway Influenced by
Other Roads

Desheng Road is an east-west elevated road in Hangzhou with high
normal speed in off-peak hours. The speed of most vehicles in off-
peak hours is much higher than in peak hours and the travelling dis-
tance in off-peak hours is longer as well (see Fig.8(c)). However, when
analyzing this expressway, we can find from Fig.8(d) that the speed of
vehicles drops significantly at the intersection with S3. In the peak
hours, there is a high density area at each direction of S3 through the
Flow Density View (Fig.8(a)). At the same time, we see that at 9:00
A.M. and from 5:00 P.M. to 8:00 P.M, traffic jams are more serious
(Fig.8(b)). In the Topology View (Fig.8(d)), the cross trips have a
higher percentage (71%) than the other modes on this road section. It
shows that most vehicles want to leave or enter the expressway and
the congestion on the expressway is caused by traffic jams on the in-
tersecting road.
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Fig. 8. Traffic jams on Desheng Road start at the intersection with S3,
where the overflow traffic cause congestion on the expressway.

7.3 Case 2: Watershed and Mismatching Analysis of an
Intersection

Qingchun Road, one of the most important east-west roads in
Hangzhou, runs across the city center and conveys very high traffic
flow. One major intersection of Qingchun Road consists of several
upward and downward ramps from Zhonghe Elevated Road.

We first select Qingchun Road in a west-east direction (see
Fig.9(a)), by setting the endpoint of the intersection with Zhonghe El-
evated Road. We can see from Fig.9(c) that the cross and leave cars
take up a total percentage of 33%, while the enter and cover cars take
up 65%. Then we select the road again by setting the endpoint of the s-
election after intersection with Zhonghe Elevated Road (see Fig.9(d)).
The share for cross and leave cars jumps to 70% (see Fig.9(f)). This
pattern indicates a large shift in the traffic flow before and after the in-
tersection. A large number of cars turn into the elevated road, leaving
the east part of Qingchun Road after the intersection much more unim-
peded than the west part before the intersection. We can also find that
more taxis run from east to west into the city center than those from
west to east in the morning peak hours (see Fig.9(b, e)). In fact, such
intersections, or so-called watershed-like intersections, exist in most
long roads running across both the downtown and the suburban. The
watershed pattern may lead to the improvement of traffic lights with
better turning signals and cycle times.

We also find that there exist two points with a very high density of
flow at both the west and east parts of the intersection (see Fig.9(d)).
It indicates long waiting time of all drivers suffered from the low ca-
pacity of the intersection.
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Fig. 9. A comparison between the results of two queries shows a low-
capacity watershed-like intersection of a trunk road. The left column is
the first query and its results, while the right column is the second query
and its results.

7.4 Case Study 3: Using Opposite Directions to Analyze
Reversible Lanes

Tianmushan Road connects a series of important office buildings,
malls, hospitals to the residential areas of the Xihu District. There
is a very high daily traffic flow of east bound in the morning, and a
high west bound traffic flow in the evening rush hour. Meanwhile, the
lanes of the opposite direction always have a lower occupation in the
corresponding hours. Such roads are considered having a tide-like pat-
tern, which is reflected by an unbalanced distribution above and below
the middle horizontal line in Flow Comparative View (Fig.10(b)). In
contrast, a parallel road next to Tianmushan Road, Shuguang Road
(Fig.10(d)), has the similar tide-like patterns, which however shows a
much more balanced view in Fig.10(e). The different transportation
capacities of the two roads can be attributed to the implementation of
a reversible lane. In Nov.11th, 2008, the city government assigned
one of the five lanes of Shuguang Road as the reversible lane used for
different directions in corresponding rush hours. Through our visual
analytics views of Fig.10(b) and (e), it is confirmed that the use of the
reversible lane is successful. This is further justified through the com-
parative views of Fig.10(c) and (f), which indicate that drivers can run
faster and longer on Shuguang Road than on Tianmushan Road.
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Fig. 10. Traffic flow patterns on two adjacent parallel roads. The left
column is for Tianmushan Road, while the right column is for Shuguang
Road.

8 CONCLUSION AND FUTURE WORK

We have proposed a visual analysis system designed for interactive
transport assessment based on massive taxi trajectory data. To sup-
port dynamic querying, we develop a novel road-based query model
for users to interactively conduct visual transport assessment tasks on
roads. This model is built upon a bi-directional hash structure, namely
TripHash, which enables real-time responses to queries over a huge
amount of trajectory data. Some well-established visualization tech-
niques are integrated into our system as coordinated views, includ-
ing Flow Comparative View, Velocity-and-Distance View, Flow-and-
Velocity, Topology View, and Flow Density View. We have demon-
strated the usefulness of our system with case studies on real data sets.
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The system has been tested in a transport assessment company
owned by our collaborators. Comments from experts in this compa-
ny read: 1) This system provides a qualified, graphically-interactive
road assessment method; 2) The assessment of whether a road meets
its current requirements calls for fewer analysts and devices; 3) Some
interesting phenomena that are unseen before can be detected with the
assistance of the system.

In future work, we will improve the road based query model aimed
to overcome its limitations. (1) We plan to experiment with more flex-
ible widgets for time query specifications, since a flexible time query
is very important to transportation analysis. (2) We will design better
interaction tools, such as brushing, to provide enhanced user-friendly
interface. (3) We will integrate more data sources such as POI data
and the public transportation data into the assessment system.
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