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Fig. 1. Scribe Radar (Icicle View) — This interactive visualization displays a collection of log events from a hypothetical
product that operates on three platforms: strawberry, coconut, and banana. Log events follow a six-level naming hierarchy
(client:page:section:component:element:action). Here, we see that the event strawberry:search:personal:-:-:impression in-
creased in frequency compared to seven days ago, indicated by a light blue rectangle, while a light red rectangle shows that the event
strawberry:inbox:inbox:conversation:-:impression dropped slightly.

Abstract— Logging user activities is essential to data analysis for internet products and services. Twitter has built a unified logging
infrastructure that captures user activities across all clients it owns, making it one of the largest datasets in the organization. This
paper describes challenges and opportunities in applying information visualization to log analysis at this massive scale, and shows
how various visualization techniques can be adapted to help data scientists extract insights. In particular, we focus on two scenarios:
(1) monitoring and exploring a large collection of log events, and (2) performing visual funnel analysis on log data with tens of
thousands of event types. Two interactive visualizations were developed for these purposes: we discuss design choices and the
implementation of these systems, along with case studies of how they are being used in day-to-day operations at Twitter.
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1 INTRODUCTION

Many consumer internet companies depend on establishing a virtu-
ous cycle that involves building a high-quality product, growing an
engaged user base, and then learning from user activities to improve
the product. Understanding user behavior based on activity logs forms
an essential component of what we call data science today. These
logs can be used for understanding how a product is used, determin-
ing which variant of a feature is better (A/B testing), and generating
insights about user behavior. The advent of scalable, distributed, and
fault-tolerant frameworks for data processing—especially the Hadoop
open-source implementation of MapReduce [7]—has made it easier
for organizations to perform “big data” analytics.

Previously, Twitter has built a unified logging infrastructure [23]
that collects user activities across all clients it owns: all page loads,
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Tweets, logins, clicks, and other actions are logged and gathered in the
organization’s Hadoop data warehouses. It is the job of data scientists
to clean, analyze, and transform these data into actionable insights
that help software engineers refine their algorithms, product managers
develop new features, and executives make more informed decisions.

However, extracting insights from log data is often a slow, difficult,
and error-prone process, especially at the scale of petabytes. We see
opportunities where information visualization can help. In particular,
this paper focuses on two scenarios: (1) monitoring and exploring a
large collection of log events, and (2) funnel analysis.

This work aims to bridge information visualization and large-scale
data analytics. We emphasize that our contributions do not lie in the
novelty of the visualization techniques, but rather in the integration of
visualizations with a large-scale logging system. This paper makes the
following contributions by detailing:

• Design choices, case studies, and lessons learned in applying in-
formation visualization to large-scale log analysis.

• An interactive visualization for exploring and monitoring a large
collection of log events.

• An interactive visualization and a systematic approach to funnel
analysis based on log events with customizable granularity.
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Component Description Example
client client application web, iphone, android
page page or functional grouping home, profile, who to follow

section tab or stream on a page home, mentions, retweets, searches
component component, object, or objects search box, tweet
element UI element within the component button, avatar
action actual user or application action impression, click, hover

Field Description
event name event name
user id user id
ip user’s IP address
timestamp timestamp
event details event details

Table 1. Hierarchical decomposition of client event names (left) and simplified definition of a client event (right).

The rest of this paper is organized as follows: We begin with an
overview of data analytics at Twitter. Section 3 summarizes related
work. Section 4 describes our application for monitoring events and
Section 5 focuses on funnel analysis. We conclude with future plans
in Section 6.

2 PROBLEM DOMAIN

Twitter provides a global platform for public self-expression and con-
versation in real-time across multiple clients: Twitter for iPhone, Twit-
ter for Android, the Twitter website, TweetDeck, etc. The company’s
data warehouses provide an analytics platform that allows data scien-
tists and engineers to better understand user activities across a multi-
tude of usage scenarios and build useful data products. The analytics
platform is comprised of thousands of Hadoop nodes across multiple
datacenters, ingesting over one hundred terabytes of raw data every
day. Engineers and data scientists from dozens of teams run tens of
thousands of Hadoop jobs collectively; these jobs accomplish every-
thing from data cleaning to simple aggregations and report generation
to training machine-learned models for promoted products, spam de-
tection, follower recommendation, and much more.

2.1 Logging at Twitter
2.1.1 Scribe
Twitter uses Scribe [36], a system for aggregating high volumes of
streaming log data in a robust, fault-tolerant, and distributed manner;
see details in [23]. A Scribe daemon runs on every production host
and is responsible for sending local log data across the network to a
cluster of dedicated aggregators in the same datacenter. Each log entry
consists of two strings, a category and a message. The category is
associated with configuration metadata that determines, among other
things, where the data are written.

The aggregators in each datacenter are co-located with a stag-
ing Hadoop cluster. Their task is to merge per-category streams
from all the server daemons and write the merged results to the
Hadoop Distributed File System (HDFS) of the staging Hadoop clus-
ter, compressing data on the fly. Another process is responsible for
moving these logs from the per-datacenter staging clusters into the
main Hadoop data warehouse. It applies certain sanity checks and
transformations, such as merging many small files into a few big
ones and building any necessary indexes. At the end of the log
mover pipeline, data arrive in the main Hadoop data warehouse and
are deposited in per-category, per-hour directories on HDFS (e.g.,
/logs/category/YYYY/MM/DD/HH/).

Each application writes logs using its own Scribe category. In prac-
tice, this creates a resource discovery problem, in that there are dozens
of Scribe categories, many non-intuitively named or whose contents
have substantially diverged from when the Scribe category was first
established, making the category name meaningless at best or mis-
leading at worst. Since the application developers are often disjoint
from the data scientists who perform the analyses downstream, it is
sometimes difficult, particularly for new data scientists, to even figure
out what logs are available. As documentation falls out of sync with
code over time, we often rely on tacit knowledge passed along through
group mailing lists and by word of mouth.

2.1.2 Client Events
To address the challenges described above, “client events” represent
an effort within Twitter to develop a unified logging framework to

simplify analyses without imposing substantial additional burden on
application developers.

Generalizing the notion of Scribe categories, the core idea is to im-
pose a hierarchical six-level naming scheme for all events (comprised
of client, page, section, component, element, action), outlined in Ta-
ble 1 (left). This six-level decomposition aligns with the view hier-
archy of Twitter clients. For example, in the case of the main web
client (i.e., the twitter.com site), the namespace corresponds to the
page’s DOM structure, making it possible to automatically generate
event names and thereby enforce consistent naming. This also enables
reverse mappings; that is, given the event name, we can determine the
DOM element where the event was triggered.

For example, web:home:mentions:stream:avatar:profile click

is triggered whenever there is an image profile click on the avatar of
a Tweet in the mentions timeline for a user on twitter.com (“reading”
the event name from right to left). This hierarchical namespace makes
it easy to slice-and-dice categories of events with simple regular ex-
pressions to focus on an ad hoc grouping of interest. For example,
analyses could be conducted on all actions on the user’s home men-
tions timeline on twitter.com by considering web:home:mentions:*;
or track profile clicks across all clients (twitter.com, iPhone, Android,
etc.) with *:profile click.

A client event itself is a structure that contains the components
shown in Table 1 (right); the structure is simplified, but still preserves
the essence of the design. The event details field holds event-specific
details as key-value pairs. For example, in the profile click event de-
scribed above, the details field would hold the id of the profile clicked
on. For an event corresponding to a search result, the event details

field would hold the target URL, rank in the results list, and other such
information. Since different teams can populate these key-value pairs
as they see fit, the message structure can be flexibly extended without
central coordination.

In summary, client events form the foundation of our unified log-
ging infrastructure in two senses of the word “unified”: first, in that all
log messages share a common format with clear semantics, and sec-
ond, in that log messages are stored in a single place (as opposed to
different Scribe category silos with application-specific logging).

2.1.3 Session sequences
User sessions, delimited by a 30-minute inactivity interval, form the
starting point of many analytics queries. Many Hadoop jobs begin
by reconstructing these user sessions from client events. Therefore, it
makes sense to simply pre-materialize the sessions. Because the hier-
archical event namespace provides a lot of information alone and many
queries can be answered using only the sequence of client event names
within a user session, we omit the event details and encode only the
event names in compressed summaries called session sequences.

A session sequence is defined as a sequence of symbols S =
{s0,s1,s2...sn} where each symbol is drawn from a finite alpha-
bet Σ. We define a bijective mapping between Σ and the universe
of event names, so that the sequence of symbols corresponds to
the sequence of client events that comprise the user session. Each
symbol is represented by a unicode code point, such that any ses-
sion sequence is a valid unicode string, i.e., sequence of unicode
characters. Furthermore, we define the mapping between events
and unicode code points (i.e., the dictionary) such that more fre-
quent events are assigned smaller code points. This in essence
captures a form of variable-length coding, as smaller code points
require fewer bytes to physically represent. For example, the
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event web:home:mentions:stream:avatar:profile click might get
mapped to \u0235. Unicode comprises 1.1 million available code
points, and it is unlikely that the cardinality of our alphabet will ex-
ceed this. Since each session sequence is a valid unicode string, we
can express analyses in terms of regular expressions and other com-
mon string manipulations. Note that these session sequences are not
meant for direct human consumption, and they need to be decoded first
to be human-readable.

2.2 Data Analysis at Twitter
Academic researchers often focus on tasks that have well-defined
goals, clean data, and clear success metrics. However, problems that
data scientists in industrial settings face on a daily basis are far more
“messy”. Let us illustrate with a realistic but hypothetical scenario:
The analysis typically begins with a poorly formulated problem, often
driven from outside engineering and aligned with strategic objectives
of the organization, e.g., “we need to attract a specific group of users”.
It is the data scientist’s job to operationalize vague directives into a
concrete, solvable problem, with the prospect that the solution will
lead to a better understanding of how to fulfill the objective (attract
users). For example:

• When does this group of users typically log in and out?
• How frequently?
• What features of the product do they use?
• Do they behave differently from other groups of users?
• Do these activities correlate with engagement?

Data identification is the first step in answering these questions.
Data scientists need to identify relevant data from the many data
sources available (Tweets, the follower graph, client events, etc.). It
is common for new data scientists to be overwhelmed by the volume
and variety of data available. Even within a single data source, finding
the right subset to look at is not an easy task.

Data identification is usually followed by exploratory data analy-
sis, which invariably reveals data quality issues (formatting bugs, cor-
rupted records, etc.) [17]. In our recollection, we have never encoun-
tered a large, real-world dataset that was directly usable without data
cleaning. When data collection errors are discovered, the engineers
who are responsible are notified to fix the issues. Unfortunately, this
type of verification is often too late, and logging errors often go unno-
ticed until the data are required for analysis. Typically, data cleaning
and verification is an iterative process that is intertwined with data ex-
ploration. These activities are often performed by running Hadoop
jobs to retrieve and pre-process the data, followed by analysis in R,
Tableau, or other tools.

After exploratory data analysis, the data scientist can more precisely
formulate the problem, cast it into a data mining or machine learn-
ing task, and define metrics for success. With the task more clearly
defined, standard techniques such as classification, regression, clus-
tering, etc. can be brought to bear in a manner that most academic
researchers would be familiar with. The data analysis lifecycle con-
cludes with the delivery of an insight, an actionable plan, or a data
product; the cycle then starts afresh with the next analysis.

2.3 Motivation for this Work
There is clearly much room for improvement in the data analysis life-
cycle: we see opportunities to leverage information visualization to
improve data identification and exploratory analysis. Our work fo-
cuses on log data, particularly client events, because it is one of the
most important datasets at Twitter. Furthermore, log analysis is a suf-
ficiently common and general problem that our lessons learned can be
applied to other systems and large-scale analytics tasks.

The first scenario we examined is monitoring and exploring the col-
lection of client events. There are multiple roles at Twitter whose re-
sponsibilities depend at least in part on these data. The first role is the
data scientist: identifying the client events related to their analyses is
challenging since all Twitter clients contribute to the unified logging
infrastructure. Currently, there are tens of thousands of client event

types, whose numbers are still growing. What are the client events
related to “log in”? The second role is the software engineer, who
implements the data collection mechanisms (typically as part of prod-
uct features). We would like to provide more visibility into the event
stream so they can more easily spot errors and improve overall data
quality. There are also product managers and engineering managers
who occasionally check the movements of client events as indicators
of product performance. This scenario and our proposed solution, a
system called Scribe Radar, are detailed in Section 4.

The second scenario is funnel analysis, a common analytics task
that explores patterns of event sequences. By applying information
visualization techniques for event sequences [44] to the session se-
quences, we aim to provide data scientists a visual interface for ex-
ploring user sessions—the hope is that interesting behavioral patterns
will map into distinct visual patterns, such that insights will literally
“leap off the screen”. The volume of data forced us to rethink stan-
dard visualization techniques and we developed data transformations
to pre-aggregate the data. The entire process and visualization system
called Flying Sessions are explained in Section 5.

Again, we recognize that the visualizations in this paper are adap-
tations of existing techniques and do not claim novelty in this regard.
Instead, the value of this paper lies in real-world experiences of how
we applied information visualization techniques at a large scale. We
also share case studies of how our colleagues were able to derive in-
sight using our applications.

3 RELATED WORK

3.1 Tree Visualizations
Most of the data in this work are trees or raw data that are transformed
into trees. The most common way to display a tree, or hierarchy, is a
node-link layout in 2D [42, 31], 3D [32], or hyperbolic space [22, 26].
Space-filling techniques, such as treemaps [16], icicle trees [20, 9] and
sunburst trees [34] use implicit containment and geometry features to
present a hierarchy. Icicle trees, also called icicle plots, display hierar-
chical data as stacked rectangles, usually ordered from top to bottom.
The root takes the entire width. Each child node is placed under its
parent with the width proportional to the percentage it consumes rel-
ative to its siblings. This visualization directly inspired our design
(Figure 8). Another variation orders the tree from left to right, placing
the children to the right of instead of under their parent (Figure 1).

Another thread of work focuses on making comparisons, which can
be categorized according to complexity factors of the differences [12]:
T – topological changes (added/removed nodes, moved subtrees), V –
node value changes, and I – whether the interior nodes’ values are in-
dependent from their children’s values. One group of work focuses on
comparing only topological changes (T ). Common techniques place
the compared trees side-by-side and provide interactions or visual cues
that highlight the differences [27]. Another group of work focuses on
node value changes without topological changes (V ), mostly involving
treemaps [40, 37]. The Map of the Market [40] represents stock market
price changes using color-coded treemaps. Recently, StemView [12]
was developed to support all types of value changes and to provide
partial support for topological changes, showing only added/removed
nodes but not subtree movements (t+V + I). Scribe Radar (Section 4)
falls into the same class (t +V + I). It compares two client event hier-
archies to show partial topological changes (new/deleted events) and
value changes (increased/decreased event counts). Although the in-
terior nodes’ values are aggregated values from their children in our
scenario, the visualization can support cases when interior values are
independent from their children as well. There are two main differ-
ences from StemView: First, our display shows a color-coded icicle
tree ordered left-to-right instead of a mixture of bar charts and ici-
cles, providing more intuitive interpretability. Second, interactions
provided by the regular expression search box introduce new explo-
ration capabilities.

3.2 Event Sequence Visualizations
Session sequences represent a type of event sequence, i.e., a sequence
of timestamped events. A number of researchers have explored vi-
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Date Client Page Sec. Comp. Element Action Count
20131128 iphone home - - user follow 80
20131128 iphone home - - menu dismiss 2
20131129 iphone home - - user follow 100
20131129 iphone home - - menu dismiss 2

Table 2. Sample rows of client event counts in the database (simulated
data); counts are generated on a daily basis.

sualization techniques for such data. Many early systems focused on
visualizing a single record [2, 13, 18, 30]. The most common approach
is to place events on a horizontal timeline according to the time that
events occurred. Later, attention shifted towards visualizing multiple
records in parallel. One popular technique is to stack instances of
single-record visualizations and to provide additional functionality for
aligning [39], searching [8, 38, 45], filtering [39], and grouping [4, 28].
However, as event sequence databases became larger, techniques that
can provide abstractions of multiple event sequences are needed. Life-
Flow [44] introduces a way to aggregate and provide an abstraction for
multiple event sequences. LifeFlow’s aggregation combines multiple
event sequences into a tree based on an alignment point. Outflow [43]
combines multiple event sequences into a graph of states based on the
assumption that events are persistent and accumulate overtime. Life-
Flow’s successor EventFlow [25] extends support to events with inter-
vals, e.g., (“lunch”, 12-1pm) instead of (“lunch”, 12pm). It handles
overlaps and includes new simplification methods for intervals. Since
client events do not have duration and the events are not persistent, we
had to adapt LifeFlow to funnel analysis and also modify the technique
to scale to hundreds of millions of records.

3.3 Visual Log Analysis
Visual log analysis can be traced back to user paths and web traffic
visualizations [29, 15, 14, 6] in the time when websites were less dy-
namic and mostly consisted of a fixed set of HTML pages. Usability
log visualization [11] is another group of work dedicated to support-
ing a small number of sessions from usability studies. There are also
systems designed for computer log analysis, such as [35].

Later advances increased the amount and complexity of log data
that could be visualized. Work in network security visualization, such
as VAFLE [10], focus on analyzing raw packet captures, IDS alerts,
firewall logs, etc. Our work is closer to another thread of work that
analyzes logs to learn about user behavior. Session Viewer [21] was
designed primarily to analyze web search logs, where users visit arbi-
trary pages across many domains. There is also increasing integration
with large scale computing [33] and data mining techniques [5, 41].
One closely-related work both in terms of scale and technique is Trail-
Explorer2 [33], where the authors performed session analysis on top
of MapReduce at eBay. However, there are a few differences: Trail-
Explorer2 requires users to define a sequence of events or funnel (e.g.,
CheckOut → PaymentReview → PaymentConfirm → CheckoutSuc-
cess) and then analyzes only the defined funnel (including time spent
within each step). Our work (Section 5) asks for a set of events to be
included and collects all possible funnels that can be generated from
the given set of events. We also support dynamic event definition and
let users define custom events. Finally, we provide additional data
transformation to aggregate rare patterns.

4 MONITORING AND EXPLORING CLIENT EVENTS

Standard summary statistics of all client events are computed daily
using Hadoop and stored in Vertica, a column-oriented DBMS; see
sample data in Table 2. Daily counts of each event type are displayed
in a dashboarding system as a time series line chart, resulting in one
line chart per each event type. Changes in these time series indicate
usage trends, impacts after feature releases, logging errors, and other
anomalies. However, it is impractical to inspect all these time series
manually, and there is no easy way to obtain an overall sense of which
events are increasing or decreasing in volume.

Furthermore, exploring or searching for event names using the ex-
isting interface was inconvenient. Users must select each level of the

Fig. 2. Scribe Radar (Table View) — A simple table that lists event
names and lets users sort by different criteria.

client event hierarchy until they locate the events that they are looking
for: “client” and “page” are quite straightforward, but the “section”,
“component” and “element” levels are much more loosely defined.
Many of these fields are empty. For instance, when looking for client
events related to tweet composer, one might wonder if it is a “section”,
“component” or “element”?

To address these issues, we built an interactive visualization to sup-
port monitoring and exploring client events.

4.1 Design

We gathered requirements through discussions with potential users
(mainly engineers and data scientists) and defined the following goals:

1. Users can search for events. The six-part event names are hard
to remember, so the search feature should not require the user to
know (or guess) the level of the hierarchy they are interested in.
Typos or invalid event names should also be expected. The inter-
face should not discourage users from retrying the search when
getting wrong or empty results.

2. Users can understand the event collection better. Although users
are aware that client events are designed using the six-level hi-
erarchy, this can be very abstract since most have never seen
all the events together, nor have they seen how each event con-
tributes to the overall structure. We should make these hierarchi-
cal relationships more concrete and help users see the “big pic-
ture” more clearly. For example, what are all the events under
iphone:home:profile? What is the proportion of events under
iphone:home:profile relative to iphone:home?

3. Users can notice changes in event volumes. Users should be able
to detect events that have changed in volume significantly in the
past n days without clicking through thousands of graphs by hand.

4.2 Description of the system

Our visualization tool, called Scribe Radar, is shown in Figure 1.
The front-end was implemented in Javascript using D3.js [3] and
AngularJS, while the back-end was written in Ruby on Rails, provid-
ing access to data in Vertica. Scribe Radar provides multiple views of
the client events collection: icicle tree, table, and node-link diagram,
shown in Figures 1, 2 and 3, respectively. Users can search for events
(top box) and click through to see details on demand (Figure 4). They
can also customize the date range and filter events by properties such
as the user’s country. The data transformation flow is illustrated in
Figure 5 and our design choices are explained as follows:

Implement search as a filter. To provide rapid interaction, search
is implemented as a filter. A standard textbox serves as the main in-
put: in the basic use case, users can perform simple keyword search.
The textbox also accepts regular expressions to provide more control
over results. When a search is submitted, the application retains only
matching event types and displays filtered events without refreshing
the page. Animated transitions transform previous results into new
results, providing a seamless experience.

Use the event collection as the focus of attention. Whether users
want to search for events or monitor changes, the output is always a
collection of events, so we focus on visualizing such data and build a
visual display that can show overviews and highlight changes.
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Fig. 3. Scribe Radar (Tree View) — A node-link diagram view of the event hierarchy. Here, the user is examining events related to interest.

Fig. 4. Scribe Radar (Time Series) — The details-on-demand pop-up
that shows changes of each client event over time as a line chart.

Build an event hierarchy based on the six-level namespace. As
shown in Figure 6, an event hierarchy can be constructed from a col-
lection of events. Rows of events and their counts on given dates are
queried from Vertica. To calculate changes, we build two separate
event hierarchies using data from different date ranges and then com-
pute a diff tree, which is small enough to store in browser memory.

Provide multiple views of the event collection. We want to pro-
vide users with alternative views to support different tasks. The first
view is a standard table of event names that users can sort by differ-
ent columns. This view is simple, fast to render, and has almost no
learning curve. However, it cannot provide an overview of the entire
collection or show the structure of the events.

To display the event hierarchy, we considered a few alternative tree
visualizations and evaluated prototypes informally with a few col-
leagues. A standard collapsible/expandable node-link tree was cho-
sen first due to its simplicity and familiarity to users. However, with
a large and bushy tree, expanding all nodes at once results in heavy
occlusion and fails to highlight changes in the nodes.

To make better use of space, we considered a few space-filling tech-
niques. The first prototype was implemented using a treemap [16].
However, the six-level structure became less explicit and identifying
the levels of inner nodes can be challenging. Our next idea was to use a
sunburst tree [34] because it displays each inner node in its own block
rather than overlaying on the leaf nodes and separates nodes into one
ring for each level, but the left side of the sunburst tree, where the lev-
els are placed “backwards”, is unnatural for reading. Ultimately, the
icicle tree was chosen due to its efficient use of space and readability.
We laid out the icicles left to right, thus the height of each rectangle
encodes the volume of events and its color represents changes. The
red-to-blue sequential color palette encodes relative change for each
client event from negative to positive. Darker colors indicate more
dramatic changes. Users can click on each node to zoom into a sub-
tree of the selected node. The icicle view has emerged as our preferred
approach for visualizing the event collection.

We had also considered StemView [12], an icicle-based visualiza-
tion that adds more visual encodings for displaying changes. However,

FilterAll events

Filtered events

IcicleEvent hierarchy

Table

Tree

Search!
keywords/regex

Other filters

Fig. 5. Scribe Radar — Transformation from raw events to visualizations.

the downside is that the visualization is less explicit in showing hier-
archical structure and requires additional explanation. In our initial
implementation, we wanted the visualizations to be self-explanatory
with a low learning curve.
Show time series as details-on-demand. Scribe Radar follows the
visual analytics mantra [19] “Analyze first, show the important, zoom,
filter and analyze further, details on demand.” It analyzes the client
event counts to compute the event hierarchy and diff tree; highlights
important changes in the visualization; lets users zoom and filter by
clicking or searching. The final component is to provide details on de-
mand for the selected event. Users can click on any rectangle (in the
icicle view) or any node (in the node-link diagram view) to open a pop-
up dialog that displays the time series for the selected client event (Fig-
ure 4). In this pop-up, users can toggle between long-term data (aggre-
gated daily) and real-time data (updated every minute). When users
see rectangles with intense colors (indicating a significant change),
they can click on it to inspect the changes.

4.3 User Feedback and Use Cases
Scribe Radar has been deployed inside Twitter since December 2013.
According to the access logs, as of June 2014 (6 months after deploy-
ment), Scribe Radar has been visited more than 1,500 times and has
been used by more than 500 unique users within the company; there
are 8.72 unique visitors per day on average. To gather feedback, we
sent a short questionnaire to an internal mailing list that includes en-
gineers, data scientists, and product managers. We also received feed-
back from users via email and had discussions with them while pro-
viding technical support. Our findings are summarized as follows:
Learning and adoption. Unlike standard usability studies or con-
trolled experiments, most users received no training from us and had
to figure out how to use the tool by themselves. Many users learned
about the tool from an announcement email that describes a few ex-
amples or heard about the tool from colleagues. Only a small number
of users had seen a live demo.
Use cases. With broad adoption within the company among different
groups of users (data scientists, engineers, and product managers), we
can identify three main use cases:
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Fig. 6. Building the event hierarchy — This diagram explains how we
construct an event hierarchy from two sets of events. (simulated data)

1. Searching for client events of interest. This clearly matches one of
the design goals. When asking for users’ feedback about the things
that they liked the most, here are some of their answers: “great for
looking up data for a particular set of events”, “what I liked the
most was the client [events] searching methods”.

2. Monitoring overall changes in client events. Some users look for
unexpected changes with Scribe Radar; this corresponds to the
other main use case we designed for. One product manager told us
about an incident where he noticed an unexpected intense red rect-
angle in the visualization. He was familiar with this client event
and did not expect it to drop. He quickly suspected that the drop
might be due to a logging issue. Investigating further, he entered a
part of that client event name in the search box and found another
event which was a typo of that event (e.g., click vs. clcik). Based
on this, his team was able to identify the code change that intro-
duced this typo and fixed the issue. This incident shows how the
visualization helped to detect issues and can be used to improve
overall data quality by providing better visibility.

3. Examining behavior effects after product feature launches. This
mode of usage was discovered during development. By filtering
the event collection, users can see only changes in events of inter-
est. For example, after a product release that launched feature X on
a particular date, we can determine how a user behavior of interest
(e.g., marking a Tweet as a “favorite”) was affected, compared to
before the feature release. This analysis can be quickly performed
by selecting the date and entering favorite$ in the search box.1 To
narrow down to the iPhone only, for example, the user can refine
the search to iphone:.*:favorite$.

5 FUNNEL ANALYSIS BASED ON LOG EVENTS

Funnel analysis [1, 24], originally developed in the context of e-
commerce sites, focuses on user attention in multi-step processes.
A classic example is the purchase checkout flow, where one funnel
might be: users visit their shopping carts, enter billing and shipping
addresses, select the shipping option, enter payment details, and finally
confirm. The funnel analogy is apt because it captures abandonment
at each step, e.g., users never complete the purchase. An e-commerce
site wants to maximize the number of users that flow through the en-
tire funnel (i.e., complete a purchase) along with related metrics (e.g.,

1The symbol $ indicates “end of word” in regular expressions.
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Fig. 7. Transforming session sequences into an overview visual display.

total revenue). The number and nature of each step in the funnel plays
an important role; for example, shortening the number of steps po-
tentially comes at the cost of making each step more complex; on
the other hand, users have little patience for activities that require too
many steps. Companies typically run A/B tests to optimize the flow
and to assess the impact on end-to-end metrics.

In the context of Twitter, there are a variety of complex funnels. An
important one is the sign up flow, which is the sequence of steps taken
by a user to join the service. For example, we might ask how many
users went through the funnel (on a particular day): front page→ sign
up page→ sign up completed?

Previously, we implemented simple Hadoop-based jobs [23] to
count occurrences of specified funnels based on the session sequences
described in Section 2. These jobs read a collection of session se-
quences and count the number of sessions with a given pattern, de-
fined as an array of regular expressions of event names (simplified in
the following pseudocode):

1 Q1 = countSequenceMatches(sequences, [
2 ’web:front:-:-:-:impression’,
3 ’web:signup:form:-:-:impression’,
4 ’web:signup:form:-:-:completed’
5 ]);

The query Q1 returns a count of the funnel front page → sign up
page→ sign up completed. However, this is only one possible path in
the user interaction flow. Users might visit the sign up page but do not
complete the sign up process. Another query Q2 would be required to
count all sequences of the form front page→ sign up page. The num-
ber of visitors who did not complete the sign up flow can be computed
by Q2−Q1. For more complex analyses, there are multiple steps (e.g.,
import contact list) and actions (e.g., import, skip) that users can per-
form between the initial and terminal events. In order to learn at which
step users “gave up”, we need to include the corresponding event types
and submit additional queries.

Instead of trying to count all the “funnel fragments” and combine
them to understand the entire sign up flow, it would be more effective
to provide an overview of all possible paths users take after they visit
the sign up page. A data scientist should be able to simply ask “What
happens after users visit the sign up page?” and analyze the results,
without needing to explicitly specify all funnel combinations.

Based on the LifeFlow [44] technique for visualizing event se-
quences, multiple session sequences can be aggregated into an
overview visualization. The original technique shows time gaps be-
tween events, but the session sequences do not explicitly encode time-
stamps (recall that by design they capture sequences of event names
only). Thus, we decided to simplify the visual display and omit the
time dimension, as illustrated in Figure 7. However, even without the
time dimension, the LifeFlow technique has never before been applied
to such a large number of event sequences and event types, and this
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represented a challenge that we needed to overcome. Not surprisingly,
an attempt to visualize the raw session sequences with the LifeFlow
technique “out of the box” failed: there were too many patterns with
too many event types, making any interpretation very difficult.

5.1 Design
The client events logging infrastructure was explicitly designed to
record as much detail as possible. Thus, trying to visualize the raw
session sequences introduces too many irrelevant distractions and is
too slow. The expected data for the visualization are unique sequences
and their counts. Ultimately, we need to reduce the number of unique
sequences (Q) to reveal insights. There are two main factors that con-
tribute to the number of unique sequences:

Q ∝ T L

1. Number of event types (T ): Many raw sequences are unique or
occur only a few times due to the large number of event types.

2. Sequence length (L): Entire session lengths could be anywhere
from one to thousands of events (outliers). However, an analysis is
likely to focus on only a small part of each session.

We collaborated closely with data scientists to identify common
themes in questions they ask using session sequences and tried to map
them to the two optimization goals above. We met a few times per
week to receive feedback and iterate on prototypes. A few initial at-
tempts to reduce the number of unique patterns included (1) limiting
the sessions to only the first n events, (2) ignoring less frequent se-
quences, (3) focusing only on client and page from the six-level hier-
archy, and a few more. Approach (1) did not work because the granu-
larity of the log events is too fine. A simple action such as logging in
can generate a multitude of events since it involves multiple back-end
services that together render the home view. Thus, even for relatively
large values of n, little useful information beyond the first few user
actions are shown. Approach (2) ended up ignoring a significant por-
tion of the sessions; in fact, rare sessions may be exactly what the data
scientist was searching for. Approach (3) was promising and started to
reveal interesting patterns. However, the fixed client - page abstraction
limited the flexibility of the analysis and failed to show finer-grained
interaction information. This approach was also unable to group to-
gether multiple pages that were less important in order to reduce the
number of unique patterns.

Learning from initial prototypes, we developed a general template
for the question that our funnel analysis tool was designed to answer:
What are the sequences of (set of events) (before/after) (alignment
point)? For example, what are the sequences of (pages) (after) (users
look at the home timeline)? The data scientist must define pages and
users look at the home timeline from raw client events, and from that
specification our tool generates an interactive visualization that an-
swers the question. Thus, the system supports these tasks:

1. Map raw event types to custom event types. For example, the
user might define a mapping that collapses all Tweet events on
the iPhone to an aggregate new event type called iphone:tweet.
By mapping events to synthetic aggregates of coarser granularity,
the number of event types is reduced.

2. Select a set of event types. Users are required to pick a set of
events to be included in the analysis, which can be custom event
types from above. This also has the effect of limiting the number
of event types.

3. Pick an alignment point and duration (n events) before or after the
alignment point. By explicitly specifying which part of the session
to analyze, we can limit the sequence length to ≤ n.

5.2 System Description
Ideally, we wish to provide an entirely interactive experience for ex-
ploring session sequences. However, changing event mappings re-
quires re-processing all raw session sequences (>100 million rows per
day), which is computationally expensive. Our solution was to split
the system into two components: The first part is data pre-processing,

where we designed a set of Hadoop data transformations and a simple
GUI for specifying those transformations. The second part is the vi-
sualization tool to display results from the first step. Using this work-
flow, users first submit a Hadoop job, wait for the job to complete, and
then explore results using the visualization tool.

5.2.1 Data Pre-processing
Step 1: Dynamic event definition. Users first need to define a dic-
tionary, i.e., a mapping from raw events to custom events, which also
specifies the list of events that will be included in the analysis. A dic-
tionary consists of multiple rules, where each rule specifies a mapping
from a regular expression of raw event names to custom event names.
Multiple rules can map to the same custom event. A unique unicode
character encoding is automatically generated for each custom event.
To resolve raw event names that match multiple rules, we take advan-
tage of rule order and apply only the first match. For example, consider
a sample dictionary rule below:

1 ’web:.*:.*:.*:.*:tweet’ => ’tweet’

Any event that matches the regex web:.*:.*:.*:.*:tweet will be con-
verted to the custom event tweet; behind the scenes, this custom event
will be stored in the output string as a unicode character (for example,
T or \u0054). Raw events that do not match any rule in the dictio-
nary will be removed during pre-processing, thus reducing the total
number of events under consideration and reducing visual complexity
downstream. To assist the user in getting started, we have predefined a
default dictionary that converts raw client events into custom events at
the page-level granularity. This default ignores details below the page
level and treats all impression events as page visits. One common ap-
proach is to explicitly track only major pages and group the remaining
minor pages into a “wildcard category” (e.g., web:others).

1 ’web:home:.*:.*:.*:impression’ => ’web:home’
2 ’web:profile:.*:.*:.*:impression’ => ’web:profile’
3 ’web:search:.*:.*:.*:impression’ => ’web:search’
4 ...
5 ’web:.*:.*:.*:.*:impression’ => ’web:others’

Step 2: Customize alignment, direction, and window size. Users
then select an event from the dictionary in the previous step as the
alignment point, the “direction” of analysis (before or after the align-
ment point), and window size (number of events). Hadoop jobs will
search for the alignment point in each session and capture a subse-
quence around the alignment point based on the window size and the
direction of analysis. By default, the alignment point is set to the be-
ginning of sessions. It is possible that there are multiple occurrences
of the alignment event in a sequence, so users can choose to include
all, the first k, or the last k occurrences.
Step 3: Run data transformation job. At this point, a Hadoop
data transformation job takes over to process and aggregate the
raw data as follows: Each session sequence in the data ware-
house is first decoded into a sequence of raw event names. For
example, the session sequence \u0560\u0562\u0564\u0561 would
be decoded into session:start → web:home:-:-:-:impression →
web:home:composer:-:-:tweet → session:end. Each raw event
name is mapped to a custom event using the dictionary from Step 1
and converted into a unicode character using new encodings for the
custom events. For instance, the example sequence above is converted
into a sequence of custom events start → home → tweet → end and
encoded as \u0041\u0043\u0054\u0042 or ACTB. Next, duplicate con-
secutive events within each session are removed. For example, the
session AABCCCCABCA is transformed into ABCABCA. After that, the job
finds the alignment point(s) and creates window(s) of the appropriate
size. For instance, using B as the alignment event and a window size
of three (after the alignment), the sequence ABCABAD is transformed
into two windows BCA and BAD. The data transformation job then takes
the union all windows from all sequences and performs a group by to
count occurrences.

{(BCA),(BCA),(BAD)}→ {(BCA,2),(BAD,1)}= sequences
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If the number of unique sequences (Q = n(sequences)) is small
enough, the data pre-processing can end here and users can view the
results, but this is often not the case. Long and infrequent patterns are
the main issues. In the example below, two sequences ABCDF and ABCDG

occur only once. In reality, an analysis might generate thousands of
single-occurrence sequences.

1 var sequences = [ {pattern: ’ABC’, count: 2000},
2 {pattern: ’ABCD’, count: 80},
3 {pattern: ’ABCE’, count: 20},
4 {pattern: ’ABCDF’, count: 1},
5 {pattern: ’ABCDG’, count: 1} ];

These rare sequences comprise a significant portion of typical results
and cannot simply be ignored. To retain them but reduce the num-
ber of unique sequences, we developed a heuristic squeezeSequences

algorithm to truncate rare sequences and aggregate them based on a
minimum frequency threshold:

1 var MIN_FREQ_THRESHOLD = 100, TRUNCATION_MARK = ’x’;
2 function truncate(sequence){
3 if(sequence.pattern.lastChar()!=TRUNCATION_MARK){
4 // ’ABCDF’ => ’ABCDx’
5 sequence.pattern = sequence.pattern
6 .replaceLastChar(TRUNCATION_MARK);
7 } else if(sequence.pattern.length>=2){
8 // ’ABCDx’ => ’ABCx’
9 sequence.pattern = sequence.pattern

10 .substring(0, sequence.pattern.length-2)
11 + TRUNCATION_MARK
12 }
13 }
14 function truncateAndRecount(sequences){
15 var frequent = new array(), rare = new array();
16 for(seq in sequences){
17 if(seq.count >= MIN_FREQ_THRESHOLD){
18 frequent.add(seq);
19 } else{ rare.add(seq); }
20 }
21 for(seq in rare){ truncate(seq); }
22 return groupAndCount(frequent.concat(rare));
23 }
24 function squeezeSequences(sequences){
25 var round = 0;
26 while(sequences.length>=UNIQUE_SEQUENCES_THRESHOLD
27 && round<WINDOW_SIZE){
28 sequences = truncateAndRecount(sequences);
29 round++;
30 }
31 return sequences;
32 }

Empirically, we have found that this algorithm works well. After pro-
cessing the data in this manner, the output is ready to be visualized.
Via the data transformation process, hundreds of millions of session
sequences (terabytes) are summarized into a small data file (typically
<15MB), which can be stored in MySQL or simply as a plain CSV
file to serve as input to the visualization interface.

5.2.2 Visualization tool
Our visualization tool, called Flying Sessions, is shown in Figure 8. It
was implemented using D3.js [3] and Ruby on Rails. The system is
a simplified version of LifeFlow with two main differences: First, the
time dimension is removed, and thus the visual display is a standard
icicle tree. Second, the layout is changed from left-to-right to top-to-
bottom to make it easier to render labels.

The control panel on the left allows users to filter the sessions based
on a few dimensions: user type, platform, experiment bucket, etc.
Users can enable/disable events to hide them from the view: these are
the custom set of events that users have defined in the data transfor-
mation step (not the raw events). Users can also change the colors
associated with these events.

On the right, the results are visualized as an icicle tree. Each rect-
angle represents an event and its color encodes the event type. The

width of each rectangle encodes the number of sessions. If the rect-
angle is wide enough, the label for the event type is displayed. Future
events are placed under previous events, so the entire interface flows
downward temporally. Users can click on any rectangle to zoom into
the subsequence after the clicked rectangle (event).

5.3 Case studies

Flying Sessions was deployed for internal use in January 2013, with
detailed documentation. Due to its complexity, it attracted a smaller
group of users compared to Scribe Radar, but the users were willing
to spend more time learning the tool. For some users, we helped them
run their analyses and analyzed the results together. In other cases,
we provided technical support in the beginning and let users perform
additional analyses by themselves. Summarizing our experiences, a
few representative use cases are as follows:

Case 1: What do users do when they first visit Twitter? We be-
lieve that users’ first actions when they visit Twitter are predictive
of overall engagement, and thus we wanted to explore the early por-
tions of session sequences. To accomplish this, we defined a dic-
tionary that mapped raw events to page-level granularity (web:home,
web:profile, web:search, web:connect, etc.) and examined ten
events from the beginning of sessions (session-start).

The resulting visualization clearly shows the fraction of traffic to
each page. From the interface, we can identify common navigation
patterns that correspond to how users engage with different product
features. For example, we can see the number and fraction of ses-
sions that begin with a visit to the home timeline (session-start →
web:home). We can identify which pages users navigated from the
home timeline to next. The interface allows us to drill down and ex-
amine sessions with a specific pattern, e.g., a visit to the home timeline
followed by a visit to the profile page (session-start → web:home →
web:profile). Overall, Flying Sessions provides a high-level under-
standing of where and how people begin spending time on Twitter.

This particular analysis has proven to be sufficiently useful that we
have deployed an automatically scheduled task that recomputes the
latest data on a daily basis. Figure 8 demonstrates the same use case
applied to a hypothetical product.

Case 2: How did the introduction of a new feature change user
behavior? Flying Sessions can be used to understand the impact of a
particular feature. We illustrate with one example: there was an exper-
iment that changed the design of the logged out home page to include a
new feature. Let’s call it feature X . The explicit goal was to encourage
users to try X and engage with the product. The engineers who ran the
experiment used our tool to analyze the results: a visit to the logged
out home page (web:front) was used as the alignment point, with a
window size of ten following events. The custom dictionary included
a client event that indicates the use of feature X (web:x) and the rest
are page-level events (web:home, web:search, web:others) from the
default dictionary.

Results showed that a small percentage of users invoked feature X
after their visit to the logged out home page (web:front → web:x).
However, comparing results between the control and the treatment
group, it was discovered that the number of users who then log in
from the new logged out home page dropped significantly (web:front
→ web:home). The engineers realized that the new design inadver-
tently made the log in box less prominent on the page, an insight made
possible by our visualization.

Case 3: Where do follows happen? The “follow” relationship de-
fines the Twitter interest graph, and the creation of additional edges
in this network is one of the most important actions on Twitter since
denser connections lead to more user engagement. There are multiple
locations in the interface where users can perform the follow action,
and we would like to better understand follow behavior.

For this analysis, the custom dictionary was modified from the de-
fault dictionary to provide finer-grained details. Because the profile
page (web:profile) has a few sections related to follows, we broke
the web:profile event down into section-level events:
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Fig. 8. Flying Sessions — This screenshot shows the beginnings of user sessions from a hypothetical product on the banana platform. We see
that 30% of users started in the inbox (purple); some of these sessions continued with a series of back and forth visits to alert (pink ) and inbox;
another 20% of sessions began at the welcome page (cyan), 40% of these successfully logged in and moved to the inbox. Users can mouse over
any rectangle in the display to see more detail via tooltips or click to zoom in.

1 ’.*:.*:.*:.*:.*:follow’ => ’follow’
2 ’web:home:.*:.*:.*:impression’ => ’web:home’
3 // See a list of followers on the profile page
4 ’web:profile:followers:.*:.*:impression’
5 => ’web:profile:followers’
6 // See a list of followees on the profile page
7 ’web:profile:following:.*:.*:impression’
8 => ’web:profile:following’
9 // See other parts of the profile page

10 ’web:profile:.*:.*:.*:impression’
11 => ’web:profile:others’
12 ...

This example illustrates the ability of our tool to specify analyses at
an arbitrary level of detail. The data transformation was performed
using the follow event as an alignment point, retaining the previous ten
events. The resulting visualization in Flying Sessions shows user paths
that led up to the follow: examining these sequences might be useful
in improving the overall flow of the interface. For example, we might
find that users click on follow from page X frequently; furthermore,
the visualization might tell us that page Y is actually responsible for
driving the traffic to page X . If users navigate from page Y to page X
simply to follow, it might be a good idea to let users follow on page
Y directly, thereby creating a useful navigation shortcut.

6 CONCLUSIONS AND FUTURE WORK

This work explores the application of information visualization tech-
niques to data analytics on large-scale event logs. One important char-
acteristic of these data is the multi-level hierarchical event namespace,
which unifies logs from multiple platforms to simplify data discovery.
Due to this structure, many analyses are possible using only the event
names, a feature we exploit via session sequences.

Taking advantage of the multi-level event hierarchy, we describe
an interactive visualization called Scribe Radar, built on top of pre-
processed event counts from Hadoop. Scribe Radar facilitates the
data identification process and improves how data scientists search for
events related to their analyses. In addition, the tool provides engi-
neers visibility into data quality issues and assists in detecting data
anomalies. We also found Scribe Radar to be useful for understanding
the impact of product features after their introduction.

We bring visualization and large-scale funnel analysis together in
Flying Sessions. Users can specify the granularity of their analyses
by defining custom dictionaries and selecting parts of the sessions.
Hadoop then handles data transformations to provide users aggregated
results that can be explored interactively in a visualization interface.

The biggest challenge when designing these systems is defining ap-
propriate intermediate data, as illustrated in Figure 9. Because the
magnitude of raw data is beyond the capabilities of standard client
machines and many traditional databases, we must reduce intermedi-
ate data size prior to visualization. This is usually accomplished via
data aggregation, which may limit the user’s ability to explore the data

intermediate data

Client Application!
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storage limit

more
less more

lessdetail
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0
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Fig. 9. Illustration of the tradeoff between responsiveness and detail as
encoded in the intermediate data.

since the dimension of interest might have been eliminated via the ag-
gregation. Providing richer methods for data exploration on the client
side requires more detail and thus more intermediate data. One ap-
proach that has worked for us is to use traditional DBMS technologies
to hold intermediate data (beyond what can be held in memory inside
the browser); the client application can then query for relevant data
and perform additional online processing as needed.

Although our techniques directly exploit a hierarchical event name-
space, we believe that they can be generalized and applied to different
applications. While scale is certainly interesting, our techniques are
equally applicable to cases where the data are small enough to be pro-
cessed on a single machine or even directly within the browser.

While the case studies and user feedback have shown that our tech-
niques are promising, there is still plenty of room for improvement.
Event monitoring would become more convenient and effective with
the inclusion of anomaly detection and a system for automatic alerts—
in general, we see great synergy in the integration of both visualization
and data mining techniques. Another area of work is to provide more
interactivity and reduce iteration time in funnel analysis, since the cur-
rent setup still requires batch processing on the cluster. We envision
that Flying Sessions could operate in preview mode on samples of ses-
sion sequences in a truly interactive fashion, and once users are satis-
fied with the previewed results, they can submit a full job to process
all data. Sampling may provide an effective strategy to balance the
demands of interactivity and the need for large-scale batch processing.
We hope that our work will inspire further research at the intersection
of visualization and large-scale data analysis.
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