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ABSTRACT

A recurrent problem in biological image analysis is to quantify the
number and size of spots on a homogeneous background. Most au-
tomated approaches rely on segmenting the individual spots, which
becomes unreliable when the image contains artifacts, noise, or
confounding objects. Therefore, practitioners often resort to tedious
and time-consuming manual counting and measurements. As an al-
ternative, we propose a visual analytics approach to this problem. It
is based on Total Variation Flow, a partial differential equation that
changes the intensities of image regions at a rate inverse to their
scale. From this, we derive novel quantitative per-pixel measures
of scale and density, and we show how the results can be combined
with tools for visualization and selection to achieve a fast summary
of median size and spot density in an image. Given a set of im-
ages, our framework places them on a 2D map that makes it easy to
quickly compare them with respect to spot sizes and density. Our
system is applied to real-world data from Stimulated Emission De-
pletion (STED) microscopy.

1 INTRODUCTION

Many biological microscopy images, such as those of membrane
protein clusters [5] in Fig. 1, show spots on a homogeneous back-
ground. Analysis of such images requires counting and measuring
the sizes of those spots, and even though sophisticated automated
algorithms have been proposed for their segmentation [2], practi-
tioners frequently resort to manual analysis because automated seg-
mentation is not reliable enough in many real-world scenarios. In
this work, we propose a novel approach to this problem that avoids
having to segment the spots, and combines automated analysis with
a small amount of user interaction to provide increased robustness.

2 RELATED WORK

We exploit a relationship between the size of image regions and the
amount by which minimizing total variation, a popular method for
noise removal [4], changes their intensity. Even though this rela-
tionship has been discovered early on [6], to our knowledge, it was
used in a practical application only once, for texture segmentation
[3]. Unlike this previous use case, we require quantitative scale
estimates: While it is sufficient for texture segmentation to have a
measure that distinguishes large from small scales [3], we require
a measure with physical units that can be interpreted by a biolo-
gist. To increase accuracy, we also have to be more careful when
setting several parameters. Human guidance can provide valuable
help with this; therefore, we develop a visual analytics system that
helps the domain expert understand and effectively use our total
variation based scale measure.

3 A NOVEL SCALE MEASURE FROM TOTAL VARIATION

We now introduce total variation (TV) regularization and flow, ex-
plain its dependence on the size of image structures, and derive
novel quantitative measures of scale and spot count in an image.
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3.1 TV Regularization and TV Flow
In total variation (TV) based image regularization, the original
grayscale image is modeled as a function f : D→ R with D ⊂ R2,
and a regularized version u is obtained as the differentiable function
u : D→ R that minimizes the energy functional

E(u;α, f ) :=
∫∫

D

(
1/2(u− f )2 +α‖∇u‖

)
dxdy, (1)

where the parameter α controls the degree of smoothness of u.
In Total Variation flow (TV flow) [1], the original image f is

embedded into a family of increasingly smoothed images u(x, t),
where x ∈ D and t ∈ [0,∞) is an artificial “time” parameter that
specifies the degree of smoothness. TV flow assumes the initial
value u(x,0) = f and finds u(x, t) for t > 0 by solving the partial
differential equation ∂u/∂ t = div(∇xu/‖∇xu‖) .

In general, the result of TV flow u(x, t) at time t = α approxi-
mates TV regularization with parameter α [3].

3.2 Total Variation and Scale
In piecewise constant images, the absolute difference δ between the
image intensity of a pixel in the original image, compared to the TV
regularized image with parameter α , can be written as [6]

δ = α/s with s = |Ω|/|∂Ω|, (2)

where the scale s of a pixel is defined as the ratio of the area |Ω| over
the boundary length |∂Ω| of the image patch the pixel belongs to.

The scale measure that was previously used for texture segmen-
tation [3] is based on TV flow rather than TV regularization. It
computes an average scale m̄ over a time window t ∈ [0,T ]:

m̄ = 4
T −

∫ T
0 1∂t u=0 dt∫ T

0 |∂tu|dt
(3)

Compared to the scale measure s, m̄ replaces δ , the overall in-
tensity change, by

∫ T
0 |∂tu|dt, the integrated amount of absolute

change during t ∈ [0,T ]. Given the approximate equivalence of TV
flow after time T and TV regularization with parameter α = T ,∫ T

0 |∂tu|dt ≈ δ if the sign of ∂tu is the same throughout the inter-
val [0,T ]. Second, m̄ replaces the regularization parameter α with
T −

∫ T
0 1∂t u=0 dt, i.e., it subtracts periods during which pixel inten-

sities did not change. Finally, m̄ contains an additional factor of 4.

3.3 Proposed Scale Measure
In this work, we propose the following new scale measure:

σ = γ

∫ Tstop
Tstart

1|∂t u|>Θ dt∫ Tstop
Tstart
|∂tu|1|∂t u|>Θ dt

(4)

Even though it is also based on TV flow, σ differs from m̄ in
three ways: First, it allows for a “burn-in” interval [0,Tstart] before
we start the measurement. Originally, each individual pixel acts as
a small region [3]. Tstart > 0 allows for formation of more mean-
ingful regions, and elimination of noise. Second, we introduce a
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Figure 1: Brushing a joint histogram of scale and intensity makes it
easy to select foreground pixels, shown here on a STED image.

threshold ∂tu < Θ to reduce the impact of higher-order structures,
which result when spots in the original image merge, on the scale
measurements. Another way to reduce their impact would be to se-
lect a shorter Tstop; however, since low-contrast spots vanish more
quickly than high-contrast ones, it is difficult to find a single Tstop
that works well for the entire image.

Finally, we replace the fixed factor 4 by a variable shape factor γ ,
which can be used, depending on the physical size of a pixel and the
shape of the expected spots, to calibrate σ to the physical units of
length, specifying the radius of the spot. According to Eq. (2), for
circular spots with constant intensity and pixel edge length l, γ = 2l.

3.4 Proposed Density Measure
A second parameter of interest is the number of spots per area. The
area covered by a circular spot of radius σ is A= πσ2. Thus, a pixel
of area l2 and scale σ accounts for the fractional part ν = l2/πσ2

of a spot. The sum Σν of fractional spot counts of all foreground
pixels in an image region provides a segmentation-free estimate of
the contained number of circular spots. Normalizing by the overall
region size AR provides a spot density measure ρ = Σν/AR.

4 A SEMIAUTOMATED FRAMEWORK FOR SPOT ANALYSIS

We have designed and implemented a visual analytics framework
to compute the scale and density measures defined in Sec. 3 for a
given set of images, and to place them on a 2D map, allowing for a
fast overview and navigation. A screenshot of our system is part of
the supplementary material.

4.1 Selecting the Parameters
The main parameters of our scale measure σ are start time Tstart and
threshold Θ; the stopping time Tstop has little impact, since at later
times, only large structures persist, which are filtered out by Θ.

To help select a suitable value of Tstart, we provide a slider that
allows the user to explore different values of diffusion time t to
identify a point at which image noise has been removed, but the de-
sired cluster structures are still well-preserved. Examples are shown
in the supplementary material.

The derivative threshold Θ can be set based on Eq. (2): Since
∂tu≈ s−1, an upper bound rmax of relevant spot sizes leads to Θ =
2l/rmax.

4.2 Fast Spot Selection Using Brushing and Linking
Computing the density measure ρ from Sec. 3.4 requires to distin-
guish foreground pixels (belonging to spots) from the background.
Our framework allows the user to quickly select these pixels by
brushing a joint histogram of intensity and scale, excluding pixels
that are too dark to be part of a spot, or outside the range of relevant
scales. A mask highlighting the selected pixels is overlaid on the
images, making it easy to confirm the selection (cf. Fig. 1).

We emphasize that, even though this step amounts to segment-
ing the image into foreground and background, it is fundamentally

Figure 2: A set of microscopy images laid out according to their me-
dian scale and spot density, represented by image patches.

different from approaches that segment individual spots in order to
count and measure them. The latter task is much harder, and is af-
fected much more severely by noise or artifacts. For example, very
few pixels could cause individual spots to merge or split, abruptly
changing their size and number in the traditional approach; in our
case, adding or removing pixels has a continuous and limited im-
pact on the result.

4.3 Mapping Images For Fast Navigation
Frequently, biologists acquire a large number of images, and would
like to obtain a quick overview of how they differ with respect to
spot density or scale. To this end, we place images on a 2D map,
whose axes are given by the overall density (horizontal) and median
scale (vertical) of the pixels selected in Sec. 4.2.

An example of such a map is shown in Fig. 2 (large version in
the supplementary). Our system links this map to all other views,
enabling the user to identify specific images (e.g., outliers), and to
examine them in detail, along with their joint histograms.

5 CONCLUSION

We derive a novel scale measure from TV flow that allows for quan-
titative analysis of spots in biological images without requiring their
segmentation. We present the theoretical foundations, as well as a
visual analytics framework that is more robust to noise and image
artifacts than fully automated segmentation-based methods, but re-
quires far less interaction than manual counting and measuring.
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