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ABSTRACT
Visualization and interactive analysis can help network ad-
ministrators and security analysts analyze the network flow
and log data. The complexity of such an analysis requires a
combination of knowledge and experience from more domain
experts to solve difficult problems faster and with higher reli-
ability. We developed an online visual analysis system called
OCEANS to address this topic by allowing close collabora-
tion among security analysts to create deeper insights in
detecting network events. Loading the heterogeneous data
source (netflow, IPS log and host status log), OCEANS pro-
vides a multi-level visualization showing temporal overview,
IP connections and detailed connections. Participants can
submit their findings through the visual interface and refer
to others’ existing findings. Users can gain inspiration from
each other and collaborate on finding subtle events and tar-
geting multi-phase attacks. Our case study confirms that
OCEANS is intuitive to use and can improve efficiency. The
crowd collaboration helps the users comprehend the situa-
tion and reduce false alarms.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces; C.2.0 [Computer-Communication Network-
s]: General—Security and protection

Keywords
Network Security, Situation Awareness, Collaborative Visu-
al Analytics
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Network security is an important issue nowadays. Large
amounts of network flows and logs describe the connection
behavior and the dynamic host status. Detecting network
events from the complex network data is a critical task. A
network event can be regarded as an anomaly which is usual-
ly caused by an attack. Subtle event detection is challenging
because of its tiny suspicious behavior among large normal
connections. Event correlations for understanding of multi-
phase attacks are also important and need new designs of
techniques. Visual analytics provide interaction and visual-
ization techniques that can support these tasks. Moreover,
the improvement can be obtained through better support
for collaboration in visual analytics.

In this paper, we introduce the OCEANS (Online Collab-
orative Explorative Analysis on Network Security) system,
which supports fast and deep event detection by integrating
visual analytics methods and collaboration features as a web
application. Linked views on three different levels visualize
the netflow and logs while submitting, commenting and re-
analyzing the events build the collaborative features. With
this collaboration possibility which makes full use of human
insights, analysis becomes more efficient. Specifically, our
system has the following contributions for helping security
experts detecting complex events:

• Visual event fingerprint and similarity based in-
spiration: Our system describes each event as a visual
fingerprint combined with three levels of information
(temporal, IP connection s and detailed connection in-
formation) extracted from multiple source data. By
loading others’ event submission, users can understand
the event pattern and target similar events, which im-
proves efficiency.

• Collaborative approach to tackle the event cor-
relation for multi-phase attacks: Experts with
different specialities can put their knowledge as well
as their findings of different aspects together. Visual
hints and interactions help users exploring based on
correlated features (e.g. suspicious IPs, neighboring
time sequence). Subtle events of the multi-phase at-
tacks are also easier to find in the multi-level visual
exploration with the aid of communication.

• Crowd-collaborative input synthesis to improve
efficiency and reduce false alarms: OCEANS in-
tegrates the crowd input from security experts and
makes everyone contribute to evaluate the events. An



overview of event graph generated from all users’ input
makes them understand the overall connection pat-
terns and helps detecting suspicious IPs.

2. RELATED WORKS
As security issues become ever more critical, there are

many visual analytics systems aiming at analyzing network
security and identifying anomaly events [17]. These systems
analyze different data, including the network flows [10], sta-
tus records of servers and switches [8], logs of the firewall,
Intrusion Detection System (IDS) and Intrusion Protection
System (IPS) [15], and the routing information [19].
There are multiple visual metaphors in security visualiza-

tion. VisAlerts maps the network into a ring, showing host
information, connectivity and temporal information togeth-
er [9]. In another aspect, Conti et.al visualized network flow
based on parallel coordinates [7]. We improved the ring
layout with a three-level hierarchy and explorative filtering
function. Pixel-based visualization and curve band design
integrate multiple data sources into the task-specific paral-
lel coordinates. An overall visual fingerprint could help users
analyze complex patterns and subtle events.
Multi-level exploration is supported by security visual an-

alytics systems. IDS Rainstorm visualized IDS alarms on a
large network, revealing temporal patterns, IP location and
severity [3]. Bunch et. al developed a 3D event detection
system showing netflow’s temporal information [6]. Data
mining techniques are combined with visualization methods
to detect events [4]. These systems did a good job in de-
tecting different types of events, but identifying event cor-
relations and multi-phase events is still challenging. Stoffel
et. al addressed the event correlation through time-series
visual analytics [18]. Our multi-level visual exploration sys-
tem combines the collaboration mechanism to solve these
problems with better engagement of people.
Collaborative analysis is useful for complex data analy-

sis and decision making, especially with visualization and
interaction [12]. Heer and Agrawala provide a design guide-
line of collaborative visual analytics [11]. Many Eyes [16]
is a popular visualization service allowing people to upload,
visualize and share their data. But it is not designed for
solving specific tasks collaboratively. Sense.us [12] uses col-
laborative visualization systems to ask many social network
users to participate in analyzing data together. Later they
make use of crowdsourcing methods for collaborative data
analysis and visualization interface design [20].
To our knowledge, there are only few works designed for

collaborative visual analytics on network security. Tradi-
tional SNS based communication for network analysts can’t
directly load other findings or provide correlating interac-
tion for deeper insight. FlowTag system [14] addresses the
network security analysis by tagging the network flow of the
IDS log with parallel coordinates. Analysts upload the tex-
tual analytics result to the server while others can download
the description of the flow to analyze. Due to the separation
of visualization and collaboration, it is hard to generate a
big picture collected by all the experts. Our system gen-
erates a global overview based on everyone’s input, which
provides insight into the event correlation.

3. DATA DESCRIPTION AND WORKFLOW
Our system is capable of dealing with netflow data, pro-

Figure 1: System workflow. Users submit events
based on visual exploration as well as evaluating and
further exploring others’ submission.

cessed Pcap data and other log data. We use the VAST 2013
Mini Challenge 3 data [2] as a benchmark for the collabora-
tion scenario and the online deployment. The network has
around 1200 user PCs and 24 servers divided into three in-
ternal parts that were monitored for two weeks (Apr.1-14,
2013). One dataset is network flow data with IPs, ports
and transferred bytes, packet number and payloads. Anoth-
er dataset is the health status log of internal IPs, including
CPU load and memory usage, etc. For week two an IPS
log is provided which records tear-down, build-up or denial
activities. The size of all the processed data is around 16GB.

Our system OCEANS supports fast visual analytics in-
teraction and online collaboration. It has two integrated
workflows (Figure 1). OCEANS is divided into three visu-
alizations on different levels of detail. In the overview the
users select a time range, in the ring graph they can choose
a group of IPs and finally in the connection river they can
examine the detailed situation. Additionally these steps are
integrated into an iterative collaboration process with differ-
ent domain experts using the same system. Users are able to
submit events including hints and proofs from the original
data. Afterwards others can reload events for verification,
comment and further correlation.

4. OCEANS
OCEANS (Figure 9-left) has a timeline, a ring graph and a

connection river, integrated into one collaboration platform
with a submission page, a commenting panel and an event
graph.

4.1 Timeline
As an overview the system provides three different types

of timelines (Figure 2). The first part consists of four time-
lines of accumulated variables visualized as horizon graphs
(Figure 2a). These variables are the summed health status
and CPU load of internal IPs, the count of warning logs of
denials from the IPS log and summed total bytes. Summed
health status values and CPU loads provide an indication of
payload-intensive attacks, such as DDoS. IPS warning logs
of denials indicate the failure of connections, which is usually
caused by the scanning behavior, SSH-based attacks or pass-
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Figure 2: Timeline Overview. (a) accumulated vari-
ables timeline. (b) entropy timeline. (c) event time-
line. (d) zoomed detail timeline.

word guessing. The summed total bytes indicate the overall
network connection behavior. The second part shows four
entropy timelines (Figure 2b). Entropy measures the distri-
bution’s degree of dispersal or concentration of features. For
a given histogram X = {ni, i = 1, ..., N}, feature i occurs ni

times in the sample. S =
∑n

i=1(ni) is the total number of
the feature observations. H(X) is defined as the following:

H(X) = −
n∑

i=1

(ni/S)log2(ni/S) (1)

We have four entropy timelines corresponding to source/
destination IP/port (Figure 2b). Research had confirmed
that attacks showing distributed or concentrated behavior
in IP/port have peak or valley patterns in the entropy [13].
The third part provides a zoom function (Figure 2d). We
also combine an event timeline in the overview (Figure 2c),
which is discussed in Section 4.4.
The timeline overview allows users to understand the trend-

s and gives visual hints for event detection. For example the
detail selection of Apr.3rd indicates a DoS attack, which
has a large total bytes transmission, high source port en-
tropy value and low destination IP entropy value. It means
large connections targeting very few target IPs and port-
s (Figure 2). With the hints as starting point, users can
brush the interesting time range and drill down to explore
the connection behavior.

4.2 Ring Graph
The ring graph shows the connections grouped by subnets

within a selected time (Figure 3). Each band of the ring
indicates one subnet. The size of the band represents the
amount of both inbound and outbound connections of the
subnet. The three levels of the ring represent the first three
levels of IP hierarchy. External IPs are visualized with colors
from green to red and internal IPs from blue to purple. A
connection from one band to the other shows the network
connection from source IP to destination IP. The color of
the connection line indicating the direction is the same as
the source IP.

(a) (b) (c)
Three level of IP hierarchy

Internal 

subnets
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Network
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target to the internal IPs.
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Internal IP connection only

Figure 3: Ring graphs. (a) Normal connections. (b)
DDoS Attack. (c) Internet broken.

The ring design gives clear visual hints for subnet con-
nections (Figure 7). Moreover, we provide multi-level explo-
ration by filtering out source or/and destination IP(s) with
common behavior. Undo and Redo operation are supported
for better exploration. Thus, users can drill down to the
detail level and search for the subtle events (Figure 10e).

4.3 Connection River
The connection river shows detailed connection behavior

reflected by the heterogeneous data source in a selected time
range. The view has six axes. Both source and destina-
tion are displayed with IPs (Figure 4-2), connection time
(Figure 4-3) and ports (Figure 4-4) as three axes. The im-
proved design of parallel coordinates uses band and hierar-
chical IP blocks to convey detailed connection information.
Each curve band represents a connection flow from source to
destination. The vertical height of each curve band encodes
the value of the selected connection variable of each connec-
tion flow (Figure 4-5). This variable can be selected from the
small preview rivers below (Figure 7-1), including duration
seconds, payload bytes, total bytes and packet count. Source
and destination IP axes are four level hierarchical treemap-
like visualizations, whose percentage is aggregated from the
corresponding connection curve band height (Figure 4-2).
So we can infer the different percentages of variables such as
payload and packets number for each IP and subnet. For ex-
ample, we can detect an file exfiltration event based on the
height encoding of large bytes transmissions (Figure 7-1).
Multi-level filtering operation is supported, which is similar
to the ring graph.
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Figure 4: Connection river. It shows the detail of
individual network flow, including IP, port, time and
network attributes from both source and destination
side, as well as health status and IPS logs.

Besides the network flow data, the connection river also
conveys the information of the IPS log and health status of
internal IPs. For all connections which get alerts of connec-
tion denial warnings in the IPS log, red curves are drawn
in the background (Figure 7-2). These curves are blocked
in the middle to signify the denial. Pixel-based visualiza-
tion besides the internal IPs shows each accumulated health
attribute in a shade of green (Figure 4-1). The darker the
shade is, the more health of the hosts reaches a critical s-
tatus. By clicking a pixel block, the health attribute values
will be shown as histogram at the side.

4.4 Collaboration platform
OCEANS provides a web based collaborative interface for

domain experts (Figure 5).

4.4.1 Events submission and commenting
Users submit events online and the system automatically

extracts the IPs, ports and time ranges from the selection
(Figure 6). Users need to tag more information such as an
event type and a description and then conduct their sub-



Figure 5: Crowd collaboration in OCEANS. Users
submit events while others can view and comment
on them. All the crowd input is synthesized into an
event graph and event timeline, providing the visual
and interactive hints for situation awareness.

missions. All the submitted events construct a event time-
line (Figure 2c) and an event graph (Figure 7). The event
timeline is positioned side by side with the other timelines,
which helps users to identify event features. It also works
on two levels of detail. The overview level is divided by at-
tack type, so experts can easily focus on their main field of
expertise and differentiate attacks. The height of each rect-
angle encodes the number of events submitted (Figure 2c).
Different shadings of green indicate the certainty of events.
Should more experts agree on one event, it becomes more
certain and gains a darker green color.

Figure 6: Event submission interface. Users submit
both visual features and textual description.

Users can brush the event timeline and click to select an
event. After selecting, the ring graph and detail connection
river of the specified IP(s) will be loaded. Additionally the
user will see the attack type, the initial description and the
comments for this event in the commenting panel (Figure 9
Commenting panel). The comments (encoded as green cir-
cles) are ordered by time and provide a clear outline of how
many people have been working on this event, who agrees
(dark green) or disagrees (light green) and how certain the
event is. After finding a new verification of the event, the
user can enter a comment in the collaboration bar and tag
it as agree or disagree. This comment will be shown with
all other comments and the user feedback will additively
change the certainty value of the event. Thus users with d-
ifferent background can share their findings, discussing and
evaluating the events.

4.4.2 Event analysis

Our visual analytics interface works as a collaborative
platform. In the event finding process, users explore the
event features while viewing other events for comparison
or validation. By loading other events, users can operate
on the visual scene and apply further filtering and analysis.
Our system provides interactive hints to correlate events for
supporting users in making use of the crowd-input events.
When users select one event in the timeline, other events
sharing source or destination IP(s) are highlighted (Figure 9-
timeline). Thus, users are able to detect the sequential re-
lationship between different events, or identify multi-phase
attacks by suspicious IPs.

The event graph (Figure 7) shows an overview of all sub-
mitted events and correlations among suspicious IPs. It is
built through synthesis of the crowd input. Each user con-
tributes to submitting and evaluating the events. Each cir-
cle represents one IP, which is extracted from the submitted
events. The size of the circle is determined by its suspicion
score. The score is calculated as the number of events the
IP involved, adding the count of agreement on this event
and subtracting the count of disagreement. IP(s) that are
involved in the events with higher certainty than a thresh-
old are highlighted with text. Internal IPs are positioned
in a triangle according to different subnets. Suspicious ex-
ternal IP(s) will be placed next to their connecting internal
IP(s). Users can evaluate the seriousness of a suspicious IP
and correlated events involved with the IP. With the event
graph, users gain a big picture of the network situation, and
can focus on special IPs. The event graph also helps securi-
ty experts viewing the clustering of several IP groups. For
example, several IPs launched an DDoS attack onto one of
the internal subnets (Figure 7-6).

5. IMPLEMENTATION
OCEANS’s front-end is built on HTML5, using d3 [5] and

jQuery. Three views load different levels of preprocessed
data from the back-end. The timeline overview uses the da-
ta aggregated for every minute using a 5-minutes moving
window. The ring graph constructs a hierarchy of IP layers
based on the subnet. The connection river shows netflow
data, IPS logs and health status logs from the server based
on the selected time range and IPs. Aggregation will be
used for the same IP communicating in a neighboring time
range when the fetched records are too many. The users’
submission and comments are stored in the center database
and updated in others’ working page to facilitate the collab-
oration. Back-end is the PHP Yii framework supported by
a MySql database with the indexes based on time and IP.
The explorative interaction can be nearly in real time (de-
pending on the selected time range and IPs) with reliable
network bandwidth.

6. CASES
We provided our collaboration system for several groups

of security analysts and graduate students major in network
security. The first case was recorded in the lab study while
the second case was recorded from users’ online submission.
In order to record more details, the third case was based on
a field study with three domain experts through our system.
The findings of each case were verified by the ground truth
of VAST Challenge 2013.
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Figure 7: Overall event graph analysis. Global patterns and suspicious IP identified through the crowd input
are shown. (1) Large file exfiltration through port 20. (2) Blocked network scan. (3) Clustering connections.
(4) Network scan. (5) Botnet C&C identified in Figure 10-E2. (6) DDoS attack (Figure 9-E2).

Figure 8: Similarity based inspiration. (a) Overview timeline. (b) A DDoS Event user 1A found. Connections
from external IP to internal web servers dominate the network. (c) Another DDoS event found by user 1C,
who was inspired by the formal visual pattern.

6.1 Case 1: DDoS Attack
Being familiar with DDoS attack, user 1A decided to search

such kind of attack in the data. Firstly, he observed the
overview timeline, and targeted several time ranges with
high total bytes transmitted in the network. He found that
the destination IP and port entropy were low (a few desti-
nation IP(s) and port(s) were targeted) while source port
entropy was high (large amounts of unique source ports)
between 9:30-10:30 a.m., Apr.3 (Figure 8 timeline). By se-
lecting one of the internal subnetwork 172.30.0.0/24 to get
the detail view, he found that a lot of external IPs connected
to the internal web server IP 172.30.0.4 through destination
port 80 (Figure 8E1). So he submitted it as a DDoS attack.
Afterwards several other users saw this event and confirmed
that it was a DDoS attack. For example, user 1B left a com-
ment that “I saw some of these IPs do bad things in other
situations, eg. 10.9.81.5 had scanned the network.”.
User 1C was new to the system. At first, he played the

animation in the timeline to get an overview understanding
of the connection behavior. He found the same pattern as
the event user 1A submitted it. He recognized the event
as a DDoS attack and submitted (Figure 8E2). Based on
OCEANS, users can easily understand the events and find
new events based on similarity of the visual fingerprint.

6.2 Case 2: Subtle and multi-phase events
Initially user 2A had already detected a DDoS attack s-

tarting from 6:00 a.m., Apr.2 and many people commented
on it (Figure 9E2). Among these, there was an interesting
comment from user 2B. He mentioned the event (Figure 9E1)
submitted by user 2C might have a relationship with the D-
DoS event. E1 is a subtle network scan in Apr.1 found by
user 2C. He found out that at the beginning (Apr.1), con-
nections were dominated by the internal connections, while
there were only small amounts of external connections. He
drilled down into the external connections and found an in-
teresting pattern. At around 11:05 a.m., 10.6.6.6 was scan-
ning the internal server of 172.30.1.0/24 (Figure 9E1).

User 2B checked the event (E1) and made an assumption
that it might be a pre-scanning of the internal website before
an attack (E2). Many others agreed with him and someone
provided strong evidence that the 10.6.6.6 was among the D-
DoS attacker IPs. User 2A searched for the end period of the
DDoS and found that the entropy line changed dramatically.
By selecting the same victim IP at around 7:04, Apr.4, he
found that 172.30.0.4 didn’t respond to any connections for
8 minutes (Figure 9E3). So he correlated these events and
summarized a multi-phase attack (Figure 9-bottom). When
clicking event E2, users could observe the event E1 and E3



Figure 9: Event correlation and subtle events detection. (E2) DDoS attack with many comments on it. (E1)
Pre-scanning (subtle) before the DDoS attack. (E3) Server crash (subtle) after the DDoS attack.

were highlighted with a black stroke in event timeline (Fig-
ure 9-Event timeline). The visual hints based on the shared
IPs help users to explore the event correlation further.

6.3 Case 3: Botnet Analysis
User 3A identified a DoS-like behavior from the internal

IPs in Apr.14. She found that the connection behaviors’ pat-
tern was mostly the same as the everyday behavior in the
first week (Figure 7-3), but some IPs “pop up”. It meant
heavier connections and payloads originated from these IP-
s (Figure 10b). In the following two hours, these IPs kept
on connecting to the 10.0.0.0/24 IP through port 80 (Fig-
ure 10c). She thought it might be a Botnet DoS attack or
distributed patching progress. Due to lack of evidence, she
submitted the events with the description and question.
User 3B who checked the event thought there should be

“Controllers” if it was a botnet. So he filtered the connec-
tion from internal IPs to external IPs and explored the time
before the event happened. He found out that eight IPs of
172.20.1.0/24, 172.30.1.0/24, 172.10.2.0/24 were connecting
to 10.0.3.77 through port 22 every 10 minutes (Figure 10d).
He submitted the new event as Botnet C&C (Command-
and-Control) and commented on the original event about
what he found. These two events could be evidence for each
other and confirmed that these eight internal IPs were con-
trolled as parts of the botnet.
However, the source of botnet was not detected yet. Based

on the observation of the two events, user 3C traced to the
starting time of the suspicious SSH behavior (Figure 10a-
E3). Firstly, he excluded the normal dominating connec-
tions which happened everyday. Secondly, by filtering the
connections from internal to external IPs (Figure 10e), he
found that there were quite short connections from port 80
to external IP 10.4.20.8 before the SSH periodical situation
started (Figure 10f). Collecting all the event pieces, an-
alysts could get a bigger picture of the botnet behavior.
Firstly, several internal IPs connected to the malicious IP
10.4.20.8 through http and got infected. After being infect-
ed, it opened the backdoor and kept SSH connections to
the controller 10.0.3.77 and listened to its command. In the

following days, the machines started a DDoS attack to the
victims of external IP 10.0.0.0/24 (Figure 10g).

Multi-level exploration with filtering is useful for detecting
the subtle events. The collaboration platform provides new
perspectives for detecting the complex attacks.

7. USER FEEDBACK
We evaluated our system from three parts: VAST Chal-

lenge 2013 submission, the lab study and online-deployment.

7.1 VAST Challenge 2013 MC3
We used an initial version of OCEANS without collabo-

ration feature to detect events in the VAST Challenge 2013
Mini Challenge 3 [2]. Our system successfully identified most
of the “loud events”, such as DDoS, network scan and was
recognized as the “Outstanding Situation Awareness” award
among 11 submissions [1]. The result confirmed our visual
analytics techniques could help domain experts. However,
one limitation that our submitted system could’t easily find
subtle events or multi-phase attacks was addressed by the
reviewers. So in this work, we arm our system with more
explorative interactions and collaborative features. This re-
sults in a better utilization of the human knowledge.

7.2 Lab study
We recruited 16 people (13 male, 3 female) with comput-

er network knowledge to participate in the scenario. After
providing a tutorial for 15 minutes, we divided them into
two groups randomly to finish the following tasks. Group
A used the visual analytics function without collaborative
features while Group B could explore the system with full
functionality. For each group, we got two people answering
questions about the system.

• Task 1 (Guided Exploration): Write down your steps
for finding the network breakdown in Apr.14 or 15.

• Task 2 (Detect Suspicious IPs): Find a DoS attack in
Apr.2 and describe time and suspicious IPs.

• Task 3 (Event Identification): Find at least one event
and write down the exploring steps.



Figure 10: Botnet analysis. (a) Overview timeline. (b,c)-E1, firstly detected events, which turned out to
be a botnet DDoS attack. (d)-E2, secondly detected events. By applying filters, user found the suspicious
outbounce SSH connections. (e,f)-E3, botnet infection as subtle event. (g) Summarized attack pattern.

In our observation, group A asked more questions in the
test. For the time usage, group A used 38.23 minutes while
group B used 22.64 minutes on average. We also evaluated
all the participants’ task accuracy (Figure 11). It proved
that our system can be correctly used and help users finding
events with visual analytics. With collaborative features,
the accuracy is higher and the speed is improved. After-
wards, we provided all of them the questionnaire and got
the feedback (Figure 12). Most feedback was positive while
some complained about the learning curve and comfortable-
ness. More discussion is in Section 8.

7.3 Crowd-collaboration online deployment
We also conducted one month of live deployment. We

sought for people from network security communities to use
the system. For easier self-learning goal, we provided ba-
sic operation illustration in our system. We also provided
a ranking system for their submissions to attract more peo-
ple participate in it. We received 343 page views from 134
unique visitors over the course of the deployment. They
submitted 80 events and gave 239 comments in all. People
who participated were including but not limited to security
engineers from industry, faculties and graduate students.

Besides the findings illustrated in Section 6, we got much
valuable feedback. For example, an engineer from a security
company told us: “The system is useful to view from differ-
ent aspects, like time, IPs and ports.”. For the collaboration
feature, one user said: “Viewing others’ submission made me



understand the features of network scan and DDoS. I also
submitted three events.”. A security analyst wrote: “I viewed
the comments on my submitted events, and some mentioned
what I didn’t think about.”. A faculty member of the secu-
rity technology department wrote: “It’s good and it is very
suitable for me to use the tool as a teaching aid in the net-
work security course. Everyone can participate in detecting
events!”. However, some drawbacks were mentioned too.
One PhD student in the field said: “I like the fancy visual-
ization, but it took time to learn to do all the operations.”.

88
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88
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Task A2

Task A3

Group A Group B

Task B1
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Figure 11: Task accuracy percentage summary.

Figure 12: Feedback of the questionnaire.

8. DISCUSSION AND CONCLUSION
Our studies demonstrate that collaborative visual analyt-

ics can help domain experts to identify and verify events
more efficiently. In the crowd collaboration system, people
of different speciality and background knowledge can con-
tribute their ideas and solve a broader range of problems.
Compared to the traditional single expert analysis system,
the online collaborative visual analytics has advantages: bet-
ter engagement of people, more discussion of specific events
and deeper understanding of correlated features.
We provide a new perspective to detect the complex and

subtle events. Everyone’s input can be shared and overall
analysis would bring a big-picture of the suspicious IPs and
correlation of events. After evaluating all the events submit-
ted to the system, we conclude that submitted events with
higher certainty turned out correct.
There are some limitations to OCEANS. The complexi-

ty of the dataset and the close interrelation of the systems
features lead to a slow initial learning curve. We give a tuto-
rial on the website and the possibility to leave questions or
feedback inside the tool. We will make the system easier to
learn and use in the future. However, our results show that
after users got familiar with the tool, he/she could use it effi-
ciently and gain the insights. Another issue is the threshold
setting for the synthesis of crowd input: currently the set-
ting is based on our trial to gain highlighting for suspicious
IP(s). Statistical models for the suspicious score distribution
should be applied for setting the threshold.
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