IMap: Visualizing Network Activity over Internet Maps
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ABSTRACT

We propose a novel visualization, IMAP, which enables the
detection of security threats by visualizing a large volume
of dynamic network data. In IMAP, the Internet topology
at the Autonomous System (AS) level is represented by a
canonical map (which resembles a geographic map of the
world), and aggregated IP traffic activity is superimposed
in the form of heat maps (intensity overlays). Specifically,
IMAP groups ASes as contiguous regions based on AS at-
tributes (geo-location, type, rank, IP prefix space) and AS
relationships. The area, boundary, and relative positions
of these regions in the map do not reflect actual world ge-
ography, but are determined by the characteristics of the
Internet’s AS topology. To demonstrate the effectiveness
of IMAP, we showcase two case studies, a simulated DDoS
attack and a real-world worm propagation attack.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks|: General
| Security and protection; C.3.8 [Computer Graphics]:
Application

General Terms
Security
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1. INTRODUCTION

Network managers face the challenging task of contin-
uously monitoring their networks for suspicious activities.
The volume of network data to be inspected can be enor-
mous, especially when performing inspection at the packet-
level. The data often originates from disparate sources and
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Figure 1: Map of the AS topology with and without nodes
and hot spots overlaid. Each country is shown as a contigu-
ous region containing the ASes operating in their territory.

is noisy when malicious and normal traffic co-occur. A well-
integrated and well-designed visualization system greatly fa-
cilitates the effective presentation and interactive analysis
of the underlying high-volume and complex data. However,
most visualization tools in this setting show a great deal
of rapidly changing data, resulting in visual representations
matching the complexity of the original data [2,16]. Conse-
quently, security experts tend to rely on easy-to-understand
graphics such as line plots, box-plots, and pie-charts.

To cope with the visual complexity of large datasets, we
developed IMAP, a simple and intuitive network visualiza-
tion. It relies on the map metaphor, which has been suc-
cessfully used to visualize relational datasets [11] and natu-
rally lends itself to depicting network activity and attribut-
ing/correlating security threats to their origins using a famil-
iar visual paradigm. IMAP visualizes the “security posture”
of a monitored network without overwhelming the cognitive
ability of human analysts; see Fig. 1.

This is achieved by superimposing heat maps (colorized in-
tensity overlays) of network activity onto synthetic geograph-
ic-like canonical maps. These maps represent the Internet
topology at the Autonomous System (AS) level. An AS



is a group of computer networks, typically under the same
administrative authority, using the same routing policy [23].
Business relationships on the AS level govern the flow of net-
work traffic across the Internet. The Internet topology can
be abstracted to an AS topology graph [3]. The visualiza-
tion of the Internet’s AS topology is important to security
analysts for many reasons, such as understanding peering
relationships, routing hot spot detection, early evaluation of
the attack severity, localizing the source of an attack, under-
standing attack propagation patterns, and others [3,21, 24].
Representing the AS topology as a synthetic geographic
map, as opposed to overlaying data onto a physical geo-
graphic map, offers significant advantages. The latter are
dominated by geographies lacking interest, e.g., oceans and
countries with limited Internet presence. Moreover, the sur-
face area of each country can be minimally related to the
country’s presence and contribution towards global traffic.
The physical distance between two countries in a geographic
map does not necessarily correspond to the level of connec-
tivity between the countries. On the other hand, in IMAP,
country size is proportional to the importance of the respec-
tive ASes in the AS topology. Therefore, countries of small
geographic area but significant role on the AS graph, occupy
larger area in the IMAP (e.g., Ukraine) and vice versa (e.g.,
Greenland); see Fig. 1. Moreover, the distance between two
countries in IMAP is related to the level of connectivity be-
tween the ASes in the corresponding geographic countries.

Contributions

We represent the Internet AS topology as a geographic-like
map, but one in which country sizes and relative placement
are based on the structural properties of the Internet. We
employ an Intrusion Detection System (IDS) that computes
anomaly scores based on live IP traffic streams, aggregated
at the AS level, and visualize the IDS anomaly scores as heat
map overlays. We demonstrate the effectiveness of IMaAp
with two case studies: a simulated DDoS attack and a real-
world worm propagation attack. A companion website! con-
tains high resolution images of the figures in this paper, as
well as a video of the network analysis described in Section 5.

2. RELATED WORK

Since our work spans several fields of network analysis
and information visualization, we cannot survey all related
work. We highlight several approaches and systems that
most influenced our work.

AS topology is traditionally visualized with static node-
link diagrams. The AS Level Internet Graph [7] depicts the
AS topology in polar coordinates, using the out-degree of an
AS to determine the distance from the center of a circle, and
its geographic location to determine its position around the
circle. Cyclops [22] shows the topology as a graph and allows
the user to focus on different areas. Node size is proportional
to connectivity, to differentiate big ISPs from small ones, and
edge thickness is proportional to the age of a link. Using
complexity reduction of the AS topology dataset results in
smaller graphs and better screen space utilization, where
instead less essential aspects of the graph are shown with
different modes of representation. In VAST [21], a quad-tree
based visualization represents the AS space in the plane,
where the third dimension shows the value of several AS
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metrics. As in these previous approaches, we also use nodes
and links to display ASes and the connections between them.
However, we also show the grouping of ASes into countries
and capture the importance and high-level structure with
the size of the regions and their relative placement.

Much work has been devoted to creating clear and infor-
mative graph drawings by optimizing node positions [10].
Studies have shown that visual embellishments, applied to
charts and other visualizations, may memorization and re-
call [1], though hinder speed of visual search in some cases [4].
Space-driven partitioning using a grid can have better short-
term performance in the revisitation of graph nodes than a
detail-driven partitioning using Voronoi diagrams [12]. Clus-
tered data can be represented by colored point clouds (node-
diagrams), colored network (node-link-diagram), or with a
landscape metaphor (node-link-group diagram). Although
the most complex of the three, and perhaps because of their
familiarity, landscape representations [9, 11, 26] have been
shown to perform well [28]. Fragmented regions may cause
misinterpretation [14], but if each group is represented by a
single, contiguous region, these representations provide only
benefits over node-link diagrams [25]. Hand-drawn maps
with contiguous regions have already been used to depict
different aspects of the web,? but creating such maps relies
on artistic talent, knowledge and wit. For use in network
security visualization it is necessary to automate the pro-
duction of such maps with an eye on aesthetics, but some of
the genius of the hand-made maps will be missing.

Basic network activity visualization systems also employ
techniques such as treemaps [2] and rings [30]. Parallel coor-
dinate plots can show individual dimensions or fields of the
dataset such as TCP source port, source IP address, des-
tination IP address, and TCP destination port [13]. Some
of these approaches can result in poor resolution, when dis-
playing quantities (such as packets sent), and difficulty in
analyzing the visualization, as the number of connections
increases. Some comprehensive network activity tools com-
bine several basic data views. A visual pattern detection
tool, showing temporal activity for thousands of hosts at
once, builds upon the structural properties of IP addresses
belonging to subnets and a global prefix, therefore describing
a 2-level hierarchy [16]. Every visual item (host) shows tem-
poral activity (traffic) as a small 24-hour clock, but for large
networks, visualizing each host becomes difficult. Anoma-
lous AS activity is detected with an interactive exploration
of a choropleth map of the world, where the saturation re-
flects the average malicious score of each AS in the country,
by the appropriate use of graphical aspects (e.g., size, po-
sition, shape, color) and network features (e.g., number of
malicious servers, geographical location, AS size, types of
malicious activities) [24].

Contrary to most approaches, in IMAP, flows are pro-
cessed per AS, thus creating fewer flows for analysis. This
reduces the clutter in the user interface due to the fewer
data points to be displayed as hot spots over the canonical
map. As a result, the cognitive ability of human analysts is
not overwhelmed. Differently from [24], which also visual-
izes the AS topology over a geographic map, IMAP uses a
synthetic geography that accurately represents the underly-
ing AS graph structure. This conveys visual information on
the role of each AS or a global scale.

“http://xkcd.com/195/, http://xkcd.com/256/
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Figure 2: IMAP overview

3. DIAGRAMS GENERATION

The IMAP diagrams are built in a three-stage process
shown in Fig. 2. The first stage deals with the construc-
tion of the AS topology graph from the given AS data [8].
The second stage is responsible for embedding the graph in
the plane and for creating the canonical AS map. The final
stage overlays network activity as heat maps.

3.1 Construction of the AS Graph Topology

IDSes capture IP flows at the border of monitored net-
works. These traces of network activity contain a wealth of
information used in attack detection, e.g., source and des-
tination addresses and ports, the packet types exchanged
between hosts, etc. However, the size of the IP space is
prohibitively large for producing any meaningful trace visu-
alization. Moreover, the IP space does not directly reflect
the Internet topology. We exploit the organization of the
IP space into ASes to significantly reduce the number of
visualized data points by visualizing the AS graph.

Even at the AS level, the number of data points related
to network activity is large: in July 2014, the number of
registered ASes was 66710 [20]. We classify ASes as cus-
tomer ASes (stub or multi-homed) and ISPs (transit AS) to
further reduce the data. Stub ASes are end-networks that
originate and receive traffic, but do not relay traffic. On the
other hand, transit ASes relay traffic from stub ASes. The
majority of ASes fall into the former category, while transit
ASes form the core of the Internet. Aggregation of stub and
multi-homed customer ASes to their parent ASes (ISPs) re-
sults in a highly-connected network mesh with fewer nodes.

In the first step we extract the AS graph G(V, F), where
the vertex set V represents the set of ASes and the edge set
E represents AS peering relationships. Both V and E can be
inferred from BGP path vector advertisements [19]. A BGP
path vector is of the form ASp, ASi,...,ASk. An adjacency
between AS; and AS; on a BGP path vector indicates a
peering relationship between the respective ASes. Note that
although AS; can have a peering relationship with AS;, this
does not necessarily imply the existence of a direct physical
link between these ASes (as the two might be connected
through a multi-hop route).

Several additional AS attributes can be extracted or com-
puted from BGP path advertisements. These include the AS
type (stub, multi-homed, transit, T1, large/small ISP) and
the IP prefixes advertised by each AS. For more details about
the extraction methods of AS topology attributes, see [19].
We use these additional attributes to assign weights to both
the vertices and edges of G. These weights are meant to
represent the relative importance of each AS in the Internet
hierarchy. Specifically, we compute weights using the con-
cept of an AS customer cone [19]. The customer cone of
AS; is defined as the set of ASes that AS; can reach using
customer links (excluding all p2p links). For node weights,
we use the AS cone-size weight, which is the number of ASes
belonging to the customer cone of the node AS;. Intuitively,
the larger the number of ASes served by AS;, the higher

the importance of that AS in the Internet topology, which
results in a higher weight being assigned to AS;.

3.2 Generation of the Canonical Map

During the generation of the canonical map that repre-
sents the AS graph G we ensure that (1) the ASes of the
same geographical country are placed within the same coun-
try in the canonical map, (2) each country in the canonical
map is contiguous, with area proportional to the number
of ASes located in that country, and (3) countries that are
closely connected on the AS level correspond to countries
that are close to each other® in the canonical map.

3.2.1 Graph Embedding

The AS graph G is drawn on the plane using the multi-
scale spring embedder sfdp of the GraphViz suite,* which
tends to place highly-interconnected ASes within a natural
cluster, e.g., a geographical country or continent, in close
proximity to one other. The sfdp algorithm has been cho-
sen due to the large size of the input graphs (about 10k
nodes and 100k edges), which requires an efficient, scalable
embedder. Using different edge weights in the graph af-
fects how well a spring embedder groups nodes of the same
country. When an emphasis is placed on edges with heavier
weights, we obtain a drawing where the heavier weighted
ASes in close proximity are co-located in the center of the
map, irrespective of the country origin of an AS. The re-
maining nodes are placed in less meaningful positions in the
map, as they have less of an impact on the drawing. When
(in the next step) ASes of the same geographic country are
grouped into one contiguous country in the canonical map,
not only is the proximity between the heaviest ASes dis-
torted, but there is also a side effect of creating an artificial
proximity between less important ones. On the other hand,
when all edges have equal weight, we obtain an embedding
that emphasizes local AS relationships. We determined (by
analyzing cluster modularity) that using equally-weighted
edges yields the best cluster-respecting results; see Fig. 3.
Note that this choice penalizes connections between larger
ASes, which carry a considerably larger traffic volume.

3.2.2  Map Defragmentation

The graph embedding obtained in the previous step is
likely to place nodes of the same geographic country rela-
tively far apart of each other, in order to satisfy the embed-
ding criteria. This can lead to fragmented countries, i.e.,
separated into multiple disjoint regions. We obtain a con-
tiguous map using the cluster-based approach (CBA) in [17].

In CBA, nodes of the same country are initially attracted
towards the barycenter of that country, i.e., the average po-
sition of the country nodes. The nodes are surrounded by an
uncrossable but flexible boundary, and then moved towards
their original positions using a force-directed algorithm. As
a result, nodes of the same country are placed in a contigu-
ous region of the plane, while preserving the initial node
distances and relative positions as much as possible.

Compare the fragmented map in Fig. 3 to its defragmented
counterpart in Fig. 1. Observe that the fragmentation in
Fig. 3 is extreme. Given the consistent continent-level col-

3W. Tobler, 1% law of geography: “Everything is related
to everything else, but near things are more related than
distant things”.

4 Available for free download from www.graphviz.org



Figure 3: Topology map generated without applying the
defragmentation step of Section 3.2.2.

oring scheme in Table 1, we can visually verify that local AS
connections shown in Fig. 3 are mostly preserved in Fig. 1, as
most of the countries occupy the same region of the drawing.
This indicates that the defragmentation process preserves
the country proximity produced by the graph embedder.

3.2.3 Final Diagram Generation

In the final stage, the embedded, clustered graph is con-
verted into a map using the GMap framework [11], as imple-
mented in gvmap from the GraphViz suite. This consists of
creating a Voronoi diagram of the graph nodes and merging
neighboring Voronoi cells that belong to the same cluster
into contiguous regions.

During this stage, the AS labels are scaled to depict the
AS weights. Given the large variance in node weights, a
logarithmic scaling is used for font sizes. This scaling facili-
tates the identification of more important ASes. We also add
the most relevant AS graph edges and assign them an alpha
channel value that depends on their weight: high-weight
edges are visible, while low-weight edges are transparent.
Finally, we label each country and we insert an Unknown
country in an unused portion of the drawing. The Unknown
country is used to display activity coming from IP addresses
that cannot be mapped to any ASes, which can occur for
several reasons (e.g., due to IP spoofing attacks).

The countries are colored according to their continent.
Each continent is associated with a range between two col-

ors, extracted from a ColorBrewer® qualitative pastel palette.

Countries are then associated with a color in that range ac-

Shttp://www.colorbrewer.org

Continent First Color Last Color
North America Light Yellow Brown
South America Light Orange Dark Orange
Europe Light Green Dark Green
Asia Light Blue Dark Blue
Oceania Light Purple Dark Purple
Africa Light Red Dark Red

Table 1: Colors associated with each continent.

cording to an ordering based on population. The range of
colors associated to each continent are reported in Table 1.

3.3 Heat Map Overlays

Heat maps are a well-known tool for visualizing dynamic
data over a geographical map, e.g., temperature variation,
wave height, wind speed, etc. In IMAP, heat maps are used
to display overlays of any feed from an IDS aggregated at
the AS level, e.g., network traffic statistics, network events,
utilization of resources, etc. To aggregate information at the
AS level, IDS warnings should map source IP nodes to their
respective AS. We designed an IDS system that aggregates
IP traffic per AS and performs per-AS flow analysis to detect
anomalies [15]. The proposed anomaly detection system em-
ployed the distance metrics methodology [29]. Information
distance (or divergence) is a measure of the difference be-
tween probability distributions, which model network traffic
attributes of interest. We adopted a semi-supervised statis-
tical anomaly detection technique.

In IMAP, heat maps are generated using the javascript
libraries Heatmap.js® and OpenLayers.” Each hot spot is
represented by a color gradient. The maximum intensity
is represented by the color red (hot) , and the minimum
is represented by the color blue (cold). The color gradient
is designed so that a broader range of colors is assigned to
higher intensity values, thus avoiding emphasis on unimpor-
tant information.

4. MAP ANALYSIS

In this section, we report and analyze several statistics
about the generated maps.

Country Area

Table 2 lists the correlation coefficients between country
statistics and country area in the map. We considered two
values for country area in the drawing: (i) the area of the
polygon associated with each country and (ii) the area of
its convex hull. A convex hull is the smallest convex poly-
gon that contains the original one, and therefore, always has
greater than or equal area compared to the original polygon.

Note that the correlations for the polygon-area and convex-
hull-area are nearly identical; see Table 2. The areas of the
convex hulls are only 7.6% larger on average indicating that
the polygons are mostly convex. Convex contours are gen-
erally believed to be easier to identify in a drawing, to the
point of being sometimes enforced in diagrams that share
the same foundations with IMAp [27].

Also observe that the polygon area is strictly correlated
to the number of nodes in the topology graph as well as to
the sum of the weights of the AS nodes in the graph (second

Shttp://www.patrick-wied.at/static/heatmapjs/
"http://openlayers.org/

Polygon Area Convex Hull Area

Total ASes 0.9256 0.9364
Number AS nodes 0.9869 0.9895
Total node weights 0.9849 0.9879
Country area 0.6729 0.6625

Table 2: Correlation between country statistics and their
areas in the generated IMAP.
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Figure 4: Statistics for top 20 countries with the most ASes.

and third lines in Table 2). This indicates that the area of
the countries can be reliably used to estimate these statistics
directly on the map. The correlation decreases, though still
remains fairly high (i.e., > .9) when considering the total
number of ASes for a country (first line in Table 2). This
includes ASes not present in the AS topology graph. Not all
ASes may be actively advertising BPG paths that we can
deduce. Figure 4 visually illustrates the strength of these
correlations for the total number of ASes, the number of
ASes is the graph, and the area of each country for the top 20
countries with the most ASes each. The nearly overlapping
lines indicate high correlation. Furthermore, they signify
that the area of the IMAP is strongly correlated to both the
total ASes as well as the number of ASes in the IMAP.

Country Distances and Adjacencies

Figure 5 provides correlations between country distances on
the map, the physical geographic distances, and the number
of AS topology graph edges that connect them. The corre-
lation is computed considering each pair of countries among
the k countries with the largest areas in the map, where k
ranges from 4 (United States, Russia, Brazil, and Ukraine)
to 184 (all countries in the map).

We evaluate two types of country distances: between coun-
try centers (centroids of the country polygons), and between
country boundaries (minimal distance between any two ver-
tices of the country polygons).

As expected, the correlation between number of connect-
ing edges and map distance is negative, which indicates
that highly-interconnected countries are in close proximity.
These characteristics are well respected when considering
the largest countries in the map (highest inverse correlation
of 0.55), but it is virtually absent when considering all the
countries in the drawing. This may be due to the lack of
direct AS links between most pairs of countries (given that
relatively few countries

we would need to place such pairs of countries infinitely
away from each other, which is not feasible in practice. In-
stead, IMAP optimizes the drawing space by placing such
countries as far as possible, subject to the constraint that
all countries form a single contiguous continent.

Therefore, although not completely faithful, country prox-
imity provides insights about the connectivity of the most
prominent countries. With this in mind, we believe that
boundary-distance is better than center-distance, for encod-
ing country connectivity. The correlation between distances
in our map and real world distances is also fairly high, indi-
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Figure 5: Distance-based correlations restricted to the k
largest countries in the map, where k € {4,5,...,184}.

cating that the map distances partially reflect geographical
ones. This suggests that the AS connectivity is significantly
influenced by physical geography, at least when considering
all connections as equally important. Despite not being di-
rectly enforced, this property has interesting side effects on
the usability of IMAP, as it likely helps locate countries and
increases map memorability.

Computation Time

The computation of the maps in this paper with 6940 nodes
and 63845 edges required an hour on a PC with an Intel
i7 processor. The vast majority of the time was taken by
the canonical map computation, and only minimal time was
required to extract data for the heat map overlays. However,
since the AS topology changes slowly, updated maps are only
expected to be generated infrequently (e.g., once a month).

5. CASE STUDIES

Two scenarios were created to demonstrate the usefulness
of IMAP. First, we use a sequence of heat maps to show
the evolution of a DDoS attack from the perspective of a
monitored network. In the second scenario, we used real
data from a worm propagation event [6] to study the origins
of the worm and its propagation patterns. We used the
CAIDA UCSD IPv4 Routed /24 Topology Dataset [8] to
build the underlying AS topology in the IMAP generation
process.

5.1 DDoS Attack

We generated synthetic DDoS attacks of varying intensity
against a monitored network over a period of 25 minutes,
using several attack topologies. Table 3 specifies the traffic
parameters for each 5-minute interval. Background traffic
was generated by the D-ITG traffic generator® (100 random
source IP nodes) and the DDoS attack (volumetric attack)
was generated by the bonesi® package. The data rates from
the DDoS hosts were greater than those generated by back-
ground traffic sources (in terms of the number of packets,
volume, and number of IP flows).

To detect anomalous traffic relative to a monitored net-
work, the IDS operates in two phases: a training phase
and an online phase. During the training phase, we create
stochastic models of normal network activity in the form of

Shttp://traffic.comics.unina.it/software/ITG
9http://code.google.com/p/bonesi



Interval Event

Three origin AS - high rate and number of flows
Four ASes - high rate, number of flows and volume
Several ASes - Botnet attack

Three ASes - high rate and number of flows
Several ASes - Weaker Botnet attack

TU W N~

Table 3: Traffic parameters per 5-minutes intervals

probability distributions. We use training datasets for this
purpose. During the online phase, which is shown in Fig. 6,
we first create empirical probability distributions of both the
incoming and outgoing traffic intercepted at the capturing
point using count-based histograms. We then compare the
online distributions with those obtained during the train-
ing phase and compute the Jeffrey distance [29] between
the respective distributions. This distance is used to mea-
sure the deviation of live traffic patterns from normal ones
for relevant traffic metrics (i.e., packet count, traffic volume,
number of IP flows, etc.). We normalize the distance so that
the dynamic range of the metric is between zero and one.
Finally, we combine the Jeffery distances of different traffic
metrics (e.g., packet count and number of IP flows) to cre-
ate composite metrics of the network activity. This weighted
combination allows the detection of different types of DDoS
attacks [15,18]. Specifically, composite metric C; combines
anomaly scores related to packet count and number of IP
flows. Composite metric C3 combines anomaly scores re-
lated to traffic volume and number of IP flows (more details
in [15]). Composite metrics are then compared to a thresh-
old 7, which defines the values for coloring the heat maps.

Figure 7 shows the heat map sequence resulting from the
analysis of five 5-minute intervals of network activity. All
heat maps show the origin of the traffic relative to the mon-
itored network, i.e., the nodes that appear in the IMAP are
the sources of the attacks. For each map along the first line
in Fig. 7, there is a corresponding map along the second line
(metrics Cq and C? in each line, resp.). All heat values with
anomaly scores less than 7 = 0.7 were suppressed. This
threshold yielded the best trade off between DDoS attack
detection and suppression of false alarms.

We observe that the security analyst can evaluate the
severity of the anomaly by the color of the hot spot—nodes
with a green hot spot are above the threshold but not near
the maximum value, while nodes with a red hot spot are
at the maximum value. The analyst can tune the heat map
parameters (i.e., coloring scale and 7) to control the number
of hot spots and coloring degrees shown on the map.

The traffic aggregation at the AS level, as opposed to the
IP level, reduces the number of hot spots that appear on the
map. Instead of showing potentially thousand hot spots, the
security analyst has to visually process a much smaller set.
For instance, around 20 ASes represent thousands of nodes
during large-scale botnet attacks. Moreover, the security
analyst infers that most attacking machines belong to only
a few ASes, which may be an aftermath of ingress filtering
at the edge gateways, which blocks outgoing traffic from
invalid source IPs. The Unknown country (represented by
the island at left lower corner) aggregates all the nodes not
mapped to any AS, i.e., traffic sent from spoofed IPs or
unadvertised IP prefixes. In every interval, this aggregate
node has a hot spot, signifying traffic of unknown origin.

Acquired network

dataint
Calculate pmf for

Calculate pmf for | |
M metric 2: p,

| metric 1: py =
Distance to training Training data pmfs / Distance to training
| dataset Dy(py,q1) 91,92 / dataset D;(p2,q2)

/
Composite metric
computation C(Dy,0,)

\ 4

A

—  Anomaly detected ‘L— Is C(Dy,D,) > threshold? —% Anomaly absent —
Figure 6: Flowchart of the anomaly detection process

We emphasize that our goal here is to demonstrate the
visual benefits of IMAP and not optimize the IDS that per-
forms anomaly detection. IMAP can operate in tandem with
any IDS (or other security tool or sensing mechanism) that
attributes anomaly metrics at the AS level.

5.2 Worm Propagation

In July 19'", 2001, a variant of the Code-Red worm ap-
peared and spread very rapidly around the world. The
CAIDA Code-Red Worms dataset [6] contains packet head-
ers collected from three different network monitors. In the
animations provided by CAIDA [5], the worm spread is pre-
sented by heat maps overlaid on top of geographical maps.
Their conclusion was that “physical and geographical bound-
aries are meaningless in the face of a virulent attack”. We
used one of the datasets containing the data relative to the
nodes (IP addresses and their respective Autonomous Sys-
tem) that were observed to be transmitting the worm.

The dataset was processed so each hot spot represents one
Autonomous System with reported activity in a given time
interval. For this case study, a positive identification of a
node participating in the spread (data pre-computed in the
CAIDA dataset) received a heat value equal to 1, so it would
create a hot spot with maximum intensity. We generated
several sequences of heat maps, representing different time
intervals (one second, one minute,'® and one hour). The
interval size provides different perspectives on the analysis
of the dataset. Figure 8 shows the spread of the worm at
various times during the propagation.

When visually inspecting the map, the size of the labels
aid in identifying the type of the AS presenting the anomaly,
in terms of importance in the network (node weights). The
security analyst can visually identify the size of the AS that
hosts an IP infected by the worm by zooming in the map.
Figure 9 shows a zoom operation near node 7018 (large AS).

The propagation analysis leads to the following observa-
tions: IMAP shows a much clearer propagation pattern com-
pared with a physical geographic map [5]. The worm spread
to several ASes within the US within a very short time of
its existence. This is an indicator that US hosts were the
prime target of the worm. The worm quickly propagated to
countries with strong (i.e., many) connections to the US—
Canada, Germany, France, Spain, UK, and Japan. It then
infected neighboring countries of those in the second group

10 A video demonstrating the spread per minute is available at
the project website http://vizsec-gama.cs.arizona.edu.



Figure 7: (DDoS) From left to right: Intervals 1 to 5 with heat maps generated with different metrics. First line shows results
for metric C1, while the second line shows results for metric Ca.

(a) Minute 1 (b) Minute 5 (¢) 10*" hour (d) 13" hour (e) 17" hour

Figure 8: Heat maps for Code-Red worm propagation. (a,b) Worm initially spreads; (c) reaches several countries at once;
(d) propagates to several ASes within the same country; and then (e) attains the peak of activity.
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Figure 9: Heat maps showing node 7018 with edges between in other countries the worm propagated only through small
heavier nodes and medium ASes.

6. CONCLUSIONS AND FUTURE WORK

(US — neighbors — neighbors). We proposed a novel visualization technique, IMAP, which

Worm activity mostly started from small and medium can be used for monitoring the security posture of a net-

nodes with several nodes from unknown sources. The Un- work of interest. In IMAP, the Internet topology at the AS

known country is highlighted in almost every interval (the level is represented by a canonical map which resembles the

number of unknown elements was checked in the pre-map geographic map of the world. The area, boundaries, and

processing step). In France, the worm spread from medium relative positions of IMAP countries represent AS attributes

and small nodes in the first hours, until it reached an AS and AS relationships of the Internet topology. To visualize



live traffic streams, aggregated IP traffic can be superim-
posed in the form of continuously updated heat maps. Heat
maps aid security analysts in visually identifying the origin
and magnitude of a security threats. We showcased two case
studies, a synthetic DDoS attack and a worm propagation
attack, to demonstrate how the intuitive and familiar to hu-
mans map metaphor facilitates the visualization, detection,
and analysis of serious network anomalies.

As future work, we will use the intuitive geographic map
metaphor to study the evolution of the Internet topology.
Using a series of canonical maps, we will investigate the In-
ternet’s past evolutionary patterns and attempt to predict
future ones. Moreover, we will study the impact of hypo-
thetical catastrophic scenarios (elimination of critical nodes,
links, and whole countries) on the Internet topology, connec-
tivity, and overall performance.
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