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ABSTRACT 
Recently, the number of observed malware samples has rapidly 
increased, expanding the workload for malware analysts. Most of 
these samples are not truly unique, but are related through shared 
attributes. Identifying these attributes can enable analysts to reuse 
analysis and reduce their workload. Visualizing malware 
attributes as sets could enable analysts to better understand the 
similarities and differences between malware. However, existing 
set visualizations have difficulty displaying hundreds of sets with 
thousands of elements, and are not designed to compare different 
types of elements between sets, such as the imported DLLs and 
callback domains across malware samples. Such analysis might 
help analysts, for example, to understand if a group of malware 
samples are behaviorally different or merely changing where they 
send data. 

To support comparisons between malware samples’ attributes we 
developed the Similarity Evidence Explorer for Malware (SEEM), 
a scalable visualization tool for simultaneously comparing a large 
corpus of malware across multiple sets of attributes (such as the 
sets of printable strings and function calls). SEEM’s novel design 
breaks down malware attributes into sets of meaningful categories 
to compare across malware samples, and further incorporates set 
comparison overviews and dynamic filtering to allow SEEM to 
scale to hundreds of malware samples while still allowing analysts 
to compare thousands of attributes between samples. We 
demonstrate how to use SEEM by analyzing a malware sample 
from the Mandiant APT1 New York Times intrusion dataset. 
Furthermore, we describe a user study with five cyber security 
researchers who used SEEM to rapidly and successfully gain 
insight into malware after only 15 minutes of training. 

Categories and Subject Descriptors 
[Security and privacy]: Intrusion/anomaly detection and 
malware mitigation – Malware and its mitigation 

[Human-centered computing]: Visualization – Visualization 
application domains 

General Terms 
Security, Human Factors. 

Keywords 
Computer Security, Malware, Sets, Venn diagrams, Visualization.  

1. INTRODUCTION 
The huge volume of unique malicious software (malware) 
gathered in today's computer security malware repositories are 
connected through a dense web of shared attribute relationships. 
For example, malware variants often borrow code from one 
another, use the same command and control servers, and use the 
same graphical images to trick users into executing them. 

Over the last decade, researchers and practitioners have 
recognized that performing similarity analysis and clustering on 
pieces of malware (malware samples) is an important research 
problem because it indicates shared provenance and reduces 
analyst workload. Researchers have proposed various statistical 
and machine learning approaches to automatically compare 
malware samples (e.g. [5]). However, these approaches are 
limited by a lack of associated visualization techniques that help 
analysts understand why these approaches claim that malware 
samples are similar or of the same software lineage. 

Visual similarity analysis could reveal the complex similarities 
and differences between a specific sample, which we call the focal 
sample, and the rest of the malware in the corpus, which we call 
the comparison samples. With that knowledge, analysts could 
leverage previous reverse engineering work performed on the 
focal sample's older "relatives," thereby accelerating and adding 
information to the reverse engineering process. Alternatively, 
analysts may realize that a new malware sample is genuinely new, 
i.e. not simply a polymorphic variant of previously observed 
malware. Set visualizations could be useful for understanding 
similarities and differences between malware if we consider 
malware samples to be like sets, malware attributes (e.g. specific 
DLLs, like kernel32.dll, or function calls, like ReadFile()) 
to be like set elements, and categories of attributes (e.g. all the 
imported DLLs or all the function calls) to be like subsets. (See 
Figure 1.) However, as we describe in Section 2, existing set 
visualizations have scalability issues or are not suited to 
comparing multiple categories across malware samples. 
Specifically, they do not support comparing large numbers of sets, 
or they do not support comparing sets with large numbers of 
elements, or they do not support comparing elements between sets 
based on the category of the element. 

As an alternative to these visualization methods, we introduce the 
Similarity Evidence Explorer for Malware (SEEM), which we 
describe in Section 3. SEEM is a scalable visualization tool for 
simultaneously comparing a large corpus of malware across 
multiple sets of attributes (such as the sets of printable strings and 
function calls). SEEM’s novel design partitions malware attributes 
into meaningful categories to compare across malware samples, 
and further incorporates comparison overviews and dynamic 
filtering to allow SEEM to scale to hundreds of samples while 
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allowing analysts to compare thousands of attributes between 
samples. 

We show the utility of SEEM by first demonstrating in Section 4 
how to generate insight about a malware sample from the 
Mandiant APT1 New York Times intrusion set, followed by a 
usability study in Section 5 where we evaluated SEEM with five 
participants. We find that novice SEEM users can quickly learn 
SEEM and use it to generate insights about malware. Comments 
from the participants confirm our design decisions and that SEEM 
addresses real-life malware analysis challenges. 

 
Figure 1. Some comparison tasks require analysts to compare 
malware sample attributes (set elements) by their categories 
(subsets), such as comparing the printable strings, imported 

DLLs, or function calls from different samples. 

2. RELATED WORK 
Because SEEM can be considered a tool for comparing sets, here 
we describe related work on set visualizations, as well as related 
work on malware visualizations.  

Euler and Venn diagrams are among the most common techniques 
for displaying overlaps among sets. These diagrams can show the 
elements that belong to each set by drawing the elements inside 
the contours, but this suffers scalability issues [25] and becomes 
cluttered when there are lots of elements. Some variations use 
area to indicate the number of elements in each set instead of 
drawing each element [6, 14, 26], but this lacks the ability to see 
which elements are in each set.  

UpSet [16] scales well to large numbers of elements and it is 
designed to visualize the intersections between many different 
sets. However, UpSet does not directly support comparing an 
individual set to other sets, nor is it clear that UpSet allows users 
to compare large numbers of sets. 

LineSets [1], Bubble Sets [7], and Kelp diagrams [9], and 
KelpFusion [17] are visualizations that rely on set elements being 
pre-positioned (e.g. on a map or in a force-directed network 
layout) and then drawing lines or contours to indicate set 
membership. However, the published examples in those papers 
show less than 100 elements distributed across less than 10 sets; 
therefore, it is not clear if these approaches would scale to 
thousands of elements distributed across hundreds of sets. 

Radial Sets [2] and Set’o’grams [11] scale well to dozens of sets 
with thousands of elements, but they do not support comparing 
multiple sets across multiple categories simultaneously (e.g. they 
could support comparing different sets of imported DLLS, but not 
comparing different malware samples and the sets of imported 
DLLs, printable strings, and function calls from each of the 
malware samples). Also, since Set’o’grams require each element 
to have its own column, Set’o’grams would have difficulty scaling 

to thousands of elements because they could not all fit on a single 
screen. 

Parallel Sets [3] and Elastic Lists [23] allow users to explore 
categorical data and a single set of elements by its different 
categories, but these visualizations do not compare multiple sets 
by different categories. 

Re-orderable matrices [4] can show the elements that belong to 
each set, as in Kim et al. [15], but cannot show an overview when 
there are thousands of points because the matrix becomes too 
large to show on one screen. 

There are many examples of automatic malware comparison 
research [5, 21], but we are not aware of many visualizations 
designed to support the malware comparison process. Quist and 
Liebrock [20], Conit et al. [8] and cantor.dust [10] visualize 
individual malware samples to aid the reverse engineering 
workflow. Trinius et al. use treemaps and thread graphs to 
perform comparative analysis on malware with the goals of 
identifying malicious software and classifying malicious behavior 
[24], but our goal is to understand the similarities and differences 
of malware samples. 

Saxe et al. [21] use multidimensional scaling to visualize similar 
malware samples. Their work incorporates a panel that allows 
users to highlight and select samples based on their attributes (e.g. 
callback domains). This approach does not directly show users 
how many attributes are associated with each malware sample, 
nor does it directly show how many attributes are in common 
between any pair of samples. 

Other approaches represent binary files as an image that can then 
be compared to images of other binary files [18] [13], but this 
does not expose the attributes of the binaries to users. 

3. SYSTEM DESCRIPTION 
Figure 2 shows the SEEM interface. The top left of SEEM shows 
basic information about the focal sample: its SHA1 and MD5 
hashes, the file size, compression ratio, and the dates the sample 
was first and most recently uploaded to the system. 

3.1 Visualizations 
SEEM uses categories to visually compare the focal sample to the 
comparison samples. Currently there are nine categories: 

1. Predicted capabilities. 
2. Printable strings. 
3. DLL imports. 
4. External function calls. 
5. Image resources. 
6. Tags applied to samples by system users. 
7. IP addresses. 
8. Hostnames. 
9. Registry keys. 

Each category has three visualizations: (1) A similarity histogram 
to give an overview of how similar the comparison samples are to 
the focal sample, (2) an ordered list of Venn diagrams to visualize 
the number of attributes and the overlap in attributes between the 
focal sample and each comparison sample, and (3) a matrix 
showing the relationship between malware samples and attributes 
(see Figure 2). Each comparison sample is compared to the focal 
sample on each category, allowing analysts to simultaneously see 
how the samples are similar to the focal sample with respect to 
each category. 
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Figure 2. The SEEM interface. Basic information about the sample (SHA1 hash, file size, etc.) is on the top left (A). Underneath (B) 

are nine categories (four are shown here), each of which has a similarity axis (C), a list of Venn diagrams (D) for each sample in 
view (E), and a relationship matrix (F) that users can open by clicking the “+” button next to the category name. The relationship 

matrix for capabilities is colored based on the confidence of the prediction that the sample has the given capability. Users can 
paginate through the samples in the Venn diagram list and relationship matrix with previous/next buttons (G).

3.1.1 Similarity Histogram 
The similarity histogram (see Figure 2C and Figure 3) shows an 
overview of how similar the comparison samples are to the focal 
sample, and includes a range slider (Figure 3D) to filter samples 
that are outside of the specified similarity range. Combined, these 
allow SEEM to compare an arbitrary number of different samples 
to the focal sample. Similarity is measured using the Jaccard 
index, where A and B are the set of attributes in a given category 
from the focal sample and a comparison sample, respectively:  

𝐽 𝐴,𝐵 =   
|𝐴   ∩   𝐵|
|𝐴   ∪   𝐵|

 

Where |𝐴| is the number of elements in set 𝐴, and 𝐽 𝐴,𝐵 =   1 if 
𝐴 ∪ 𝐵 =   0. Each category is visualized in a separate histogram, 

allowing analysts to quickly understand how the comparison 
samples are distributed across all of the categories. The 
histogram’s x-axis is the Jaccard index, where the bars drawn 
towards the left represent comparison samples that have high 
Jaccard index with the focal sample, and bars drawn towards the 
right represent comparison samples with low Jaccard index with 
the focal sample. 
A range slider at the bottom of each histogram helps analysts to 
filter through arbitrarily large numbers of malware samples. Any 
sample that is outside of the range for one category is also filtered 
out of the other categories as well (see Figure 2). 

 
Figure 3. Similarity histograms for predicted capabilities, 

printable strings, and DLL imports. Bar height indicates the 
number of comparison samples, and the horizontal position 
indicates how Jaccard index with the focal sample. Bar has 
three colors: cyan bars (A) are samples that have not been 

filtered out, and gray bars (B) are the total number of 
comparison samples. Bars become yellow (C) when users 

hover over them, and yellow bars appear in the other 
similarity histograms to indicate where the comparison 

samples in the hovered bar appear in the other similarity 
histograms. Hovering on a bar also displays a tooltip with the 

number of samples in the bar. Users can adjust the range 
sliders (D) for each histogram to filter out samples that are 

not within a certain similarity range. 



The histogram bars are displayed using 3 colors. The heights of 
the cyan bars (Figure 3C) represent the comparison samples that 
were not filtered out, and the heights of the gray bars (Figure 3B) 
represent the total number of comparison samples (both filtered 
and unfiltered). This filtering action is also reflected in the Venn 
diagram list and relationship matrix visualizations. 
To see where the samples in one bar appear in the other 
histograms, users can hover on a bar in the similarity histogram, 
and SEEM displays a tooltip that shows users the number of 
samples represented by the bar and the Jaccard index (expressed 
as a percent) of the samples in the bar. Hovering over a bar on one 
category draws yellow bars on the other categories to show how 
those samples are distributed on other categories (see Figure 3C). 

3.1.2 Venn Diagram List 
The Venn diagram list (Figure 2D) shows pages of malware 
samples. Each column in the Venn diagram list is a sample. The 
angled text at the top of the column is an antivirus engine label, 
the sample filename if no antivirus engine label is available, or the 
sample’s SHA1 hash if there is no antivirus label or filename. The 
comparison samples are sorted in descending order by average 
Jaccard index across all nine categories. Clicking the sample name 
will refocus SEEM with the clicked sample as the focal sample. If 
a user hovers over the sample name, a tooltip pops up that has 
additional information about the sample, such as file size and 
compression ratio (see Figure 4). 

The paginated view shows the 20 comparison samples most 
similar to the focal sample, plus the focal sample itself, where 
each sample is a column. The first column is the focal sample and 
is always in view, regardless of which page of samples users are 
on or which filtering operations users perform. Users can click the 
right and left arrow buttons to navigate to the next and previous 
pages of samples. This list is updated based on filtering performed 
using the range sliders on the similarity histograms. 

 
Figure 4. SEEM pops up a new tooltip with additional 

information when users hover over a malware sample’s name. 

             
Figure 5. (A) The legend for Venn diagram design. The orange 

section at the top represents the attributes only in the focal 
sample. The cyan section at the bottom represents attributes 

only in the comparison sample. The green section in the 
middle represents the attributes in both the focal sample and 
the comparison sample. (B) Hovering over a Venn diagram 

reveals a tooltip showing the number of attributes in the focal 
sample, the comparison sample, and the intersection. 

The Venn diagrams show the types of similarity (overlap, strict 
subset, disjoint) in each category. See Figure 5A for the Venn 
diagram legend. 

The height of the Venn diagrams is proportial to the number of 
attributes in that category; therefore if one Venn diagram is 
shorter than another, then that Venn diagram has fewer distinct 
attributes in it. This allows analysts to compare two Venn 
diagrams in a category and be able to compare the number of 
elements in each set. If a sample has no attributes in that category, 
the height of its rectangle in the Venn diagram is zero. For 
example, if the focal sample and all comparison samples do not 
have any extracted IP addresses, then the Venn diagrams in the IP 
address category all have no height. If the focal sample does not 
have any extracted IP addresses, but a comparison sample has 
three extracted IP addresses, then the focal sample component of 
the Venn diagram has no height but the comparison sample’s 
component of the Venn diagram does have height. 
Hovering on a Venn diagram shows users a tooltip that displays 
the number of attributes in the focal sample, the number of 
attributes in the comparison sample, and the number of attributes 
in the intersection between the two (see Figure 5B). 

3.1.3 Relationship matrix 
After examining the similarity histograms and the Venn diagrams, 
analysts may wish to know exactly which attributes in a category 
belong to the samples in view. To do this, analysts click the “+” 
button next to the category name to view all of the attributes in 
that category (Figure 2F and Figure 6). For example, analysts can 
click the button next to “Capabilities” to view the capabilities 
relationship matrix that shows all of the capabilities that appear in 
any of the comparison samples. 

This matrix can be sorted by approximate frequency of the 
attribute (e.g. how many samples in the database have the same 
printable string), by lexicographical order, or by occurrence in a 
specific sample. The relationship matrix for the printable strings 
category has an additional column that indicates which printable 
strings provide evidence for a given predicted capability, if any. 
Sorting helps users navigate the matrix and allows the 
visualization to scale to large numbers of elements while still 
being useful to users. 

If the category has confidence associated with it (e.g. the 
confidence of a capability prediction) then the matrix cells are 
colored ranging from dark gray, representing low confidence, to 
light gray, representing high confidence. 

3.2 Linked Views 
The similarity histograms are linked to the Venn diagram list, 
allowing users to see if samples in a histogram bar are currently in 
view in the Venn diagram list, and vice versa. When users hover 
on a bar in a similarity histogram, the samples represented by that 
bar highlight in the Venn diagram list. Likewise, when users 
hover on a Venn diagram, the corresponding bar on each 
similarity histogram highlights to indicate the Jaccard index of 
that comparison sample from the focal sample. 

3.3 Sample Annotation 
Users can select samples (either the focal sample or comparison 
samples) by clicking the checkboxes next to their names. Next, 
users can type a tag name and apply it to the selected samples. 
SEEM then updates the “tags” category so that all the 
visualizations reflect the new tag. 



3.4 Implementation 
SEEM is built into Cynomix [12], a web-based system for 
analyzing large-scale malware corpora. SEEM is implemented in 
HTML, CSS, and JavaScript using the AngularJS and D3 
JavaScript libraries. The back-end architecture of Cynomix 
consists of a web server built using the Tornado framework and a 
MongoDB database that is kept in sync with an Elasticsearch 
index for fast faceted search. 

The database stores the cluster for each sample, along with the 
nearest neighbors for each malware sample (i.e. malware samples 
that are at least 50% similar). The database also stores several 
attributes of the malware samples, including predicted capabilities 
(using the capability detection described by Saxe et al. [22]), 
printable strings, DLL imports, external function calls, tags 
applied to the sample by Cynomix users, IP addresses, hostnames, 
registry keys, and image resources. Predicted capabilities have an 
associated score that indicates how much evidence exists to 
support the prediction. IP addresses, hostnames, and registry keys 
are all extracted from the malware samples by running a regular 
expression on the printable strings in the malware samples. 
Cynomix collects these attributes through static analysis; dynamic 
analysis is planned for future versions. 

4. EXAMPLE ANALYSIS 
To give an example of how SEEM can be used to analyze a 
malware sample, we chose a malware sample from the Mandiant 
APT1 dataset as the focal sample to analyze (SHA1 hash 
05b8c1f0a4cebf2b05d41b904d4e93660acd9976). There were 31 
other samples similar to the focal sample, which defined the 
comparison samples used by SEEM. This example illustrates a 
real-world use case: After a hacking incident, analysts need to 
analyze all suspicious files found on the infected computers and 
will begin with one sample to analyze. 

By looking at the histograms and the Venn diagram list we 
noticed that none of the samples had any images, tags, IP 
addresses, hostnames, or registry keys. This allowed us to quickly 
focus on comparing capabilities, strings, DLLs, and functions. 

Initially we decided to focus on the most similar samples. First we 
adjusted the capabilities histogram slider to keep the two bars of 
most similar samples, then the strings histogram slider to filter out 
samples that do not have similar capabilities and strings (see 
Figure 7). By looking at the Venn diagram list we saw that five 
samples are extremely similar to the focal sample. We also saw 
four other samples that are very similar to the focal sample with 
the same DLL imports but a few differences in capabilities, 
strings, and functions. All of these samples are also from the 
APT1 dataset. We noticed that seven samples have the “plays 
audio” capability, which we thought was interesting, so we 
applied the tag “look for audio resources” to annotate those seven 
samples about additional analysis we would like to perform 
outside of SEEM. We also applied the tag “analyze with 
05b8c1f0a4cebf2b05d41b904d4e93660acd9976” to the five most 
similar samples so that anyone who analyzes those samples might 
benefit from reusing the analysis performed on the focal sample. 

Then we started looking at the samples that had different strings 
by resetting the capabilities histogram slider and by changing the 
strings histogram slider to filter out samples with very similar 
strings. We sorted the strings relationship matrix by strings that 
occur in the focal sample to see which strings were different in the 
comparison samples and we noticed that some string differences 
were in spelling. So then we sorted the strings relationship matrix 
by lexicographical order and noticed lots of misspellings and 

typographical errors (see Figure 7). Many differences between the 
malware samples were due to spelling and typographical changes. 
This could indicate new malware versions with fixes. 

Using SEEM we quickly identified the most similar samples and 
understood how similar they are to the focal sample. We also 
noticed that many differences in printable strings were due to 
different spellings of the same strings. Using these insights, we 
annotated the samples to help us with the malware analysis triage 
process and to see evidence that many of these samples may be 
alternate versions of each other. 

5. EVALUATION 
To evaluate SEEM, we conducted a user evaluation so we can (1) 
better understand SEEM’s usability, (2) evaluate whether users 
can use SEEM to understand similarities and difference’s between 
malware, and (3) identify future work for improving SEEM. 

5.1 Participants 
We recruited five participants who have malware analysis 
experience. The participants have 2 to 14 years experience in 
cyber security. All participants were male, and their ages ranged 
from 29 to 50 years old. Our goal was to recruit enough 
participants to discover the primary usability concerns, and 
research suggests that five participants is sufficient [19]. 

5.2 Experiment Design 
Evaluations were performed on a 15-inch MacBook Pro with a 
Retina display, 16 GB of RAM, and a 2.6 GHz Intel Core i7 
processor. We ran SEEM inside Chrome browser version 35. We 
used the APT1 dataset described in Section 4, with sample 
05b8c1f0a4cebf2b05d41b904d4e93660acd9976 chosen as the 
focal sample the participants should analyze. 

5.3 Procedure 
All participants took part in the evaluation in separate sessions, 
each lasting about 40 minutes. We offered participants a $15 USD 
gift card to Starbucks as compensation. Each session consisted of 
three consecutive phases: A training phase, an experimental 
phase, and a debriefing interview. Prior to the session, each 
participant had seen one to three demonstrations of SEEM. 

During the training phase, participants read descriptions that 
explained SEEM’s visual components and interactive widgets, 
then participants performed four training tasks. Participants were 
not allowed to proceed to the experimental phase until they 
correctly completed all training tasks. In the experimental phase, 
participants began by performing three tasks, and then participants 
freely explored the dataset for 10 minutes. Participants were asked 
to think aloud during the experimental phase. Afterwards, 
participants provided verbal feedback in the debriefing phase. The 
order of the tasks in the training phase was fixed, but the order 
during the experimental phase was different for each participant to 
reduce ordering bias. 

5.4 Results 
5.4.1 Timed Tasks 
For Task 1 (“How many samples have the same capabilities as the 
focal sample?”), all participants correctly answered the question 
in 8 to 26 seconds. One participant answered the question by 
visually inspecting the Venn diagrams and correctly identifying 
how many samples have the same capabilities. The rest of the 
participants adjusted the range slider on the capabilities category 
to filter out the samples without the same set of capabilities as the 
focal sample and then counted the remaining samples that were 
not filtered out. 



 
Figure 6. The relationship matrix showing malware samples that have five different variations on the string "Start shell first."

 
Figure 7. Analying a sample from the APT1 dataset. Five samples are extremely similar and bear analysis in a lower-level tool such 

as IDA Pro to determine their precise differences. Four other samples have the same DLL imports as the focal sample and also 
similar sets of capabilities, strings, and function calls.

Task 2 asked participants to answer whether or not the samples 
that import the same DLLs as the focal sample also have the same 
predicted capabilities and printable strings as the focal sample. 
Participants took 15 seconds to 1 minute 8 seconds to answer this 
question. All participants answered correctly. 
Two participants performed this task by adjusting the range slider 
on the DLLs category to filter our samples without the same 
DLLs, and then inspecting the histograms on the capabilities and 
strings categories to see that some samples do appear similar but 
many samples are also very dissimilar to the focal sample in their 
capabilities and strings. 

One participant used the DLLs histogram slider to filter out 
samples with dissimilar sets of DLLs, then looked at the Venn 

diagrams for the remaining samples to see that many samples 
have additional capabilities and strings not present in the focal 
sample, and some also lack capabilities and strings present in the 
focal sample. 
Another participant began by adjusting the DLLs histogram slider 
as the other participants did, and then adjusting the capabilities 
and strings histogram sliders to filter out samples with dissimilar 
sets of capabilities and strings. The participant noticed that these 
last two filtering actions reduced the number of samples in view, 
and correctly concluded that many of the comparison samples do 
not share the same set of capabilities and strings as the focal 
sample. 



The other participant also used the DLLs histogram slider to filter 
out dissimilar samples, and then opened the capabilities and 
strings relationship matrices to see whether the samples had the 
same capabilities and strings. 

Task 3 caused some confusion in the way the question was 
worded (“Of the samples that do not have the same set of DLLs as 
the focal sample, describe how the DLLs are different in those 
samples.”), which may have caused the task completion times to 
be longer (times ranged from 48 seconds to 2 minutes and 33 
seconds). At first one participant thought the question was asking 
about DLL function calls before he asked for clarification. 

All but one participant used the DLLs histogram slider to filter out 
samples that have the same DLLs as the focal sample, and then 
opened the DLL relationship matrix to examine which samples 
import which DLLs. 

The other participant did not use the range slider and immediately 
started using the DLL relationship matrix while flipping from the 
first page of samples to the second page to examine all of the 
samples and using the Venn diagrams to visually check which 
comparison samples have the same set of DLLs as the focal 
sample. 

5.4.2 Free Exploration 
Participants often used the predicted capabilities to get a general 
idea of the samples, indicating that users are interested in 
automatic capability detection. 

The participants made several observations about the data while 
exploring it with SEEM. Many of the observations were made 
possible because SEEM displays all of the samples’ attributes 
simultaneously, allowing users to see all of the attributes of the 
samples within the cluster. 

One participant discovered the same five very similar samples we 
noted in Section 4. He used the range sliders to filter out samples 
that are not similar. He also hovered over the sample names to get 
additional information, and found that all the samples have the 
same file size, providing further evidence that the samples are 
extremely similar. This is a very important observation that we 
were hoping users could make by using SEEM. 

All five participants noticed that none of the samples had any 
associated images, tags, hostnames, IP addresses, or registry keys. 
They accomplished this by opening the relationship matrix for 
each category and seeing that it was empty. This is the same 
observation we made in Section 4. 

One participant noticed several strings that he felt indicated that 
the samples were correctly clustered together, such as unique 
looking error messages and text with misspellings and 
grammatical errors. 

All participants looked at the DLLs, function calls, and strings 
categories to guess at the capabilities of the focal sample and 
comparison samples. Participants made several other observations 
about the capabilities of the samples, either from the capabilities 
category or by inferring from the DLLs, function calls, and 
printable strings categories: One participant commented that the 
predicted capabilities seem like standard malware capabilities. 
One participant noticed that the focal sample has the capability 
“modifies Windows services” along with all of the comparison 
samples. That participant, as well as another participant, found 
several printable strings and function calls that provide evidence 
that those samples modify Windows services.  

While examining the DLLs category, one participant commented 
that it was unusual that none of the samples appear to import 

winsock.dll despite the fact that some samples import urlmon.dll 
and some samples have the “downloads files” predicted 
capability. This is something he said he would want to explore 
deeper if he were to conduct further analysis. 

While looking at the comparison samples, one participant noticed 
a comparison sample that is similar to the focal sample but has an 
additional predicted capability: uploads files. The participant 
found this interesting, and suggested that the next step in a deeper 
analysis would be to see if that comparison sample communicates 
with the focal sample to exfiltrate data from the victim’s 
computer. 

5.4.3 Debriefing 
All participants appreciated SEEM’s design and were very 
positive about its usability and utility, with comments such as 
“[the developers] have done a good job,” and “I feel like [SEEM] 
is pretty useful.” Two participants also said that they would like to 
use SEEM in conjunction with a disassembler like IDA Pro to 
help direct where to look in the samples. 

Two of the participants mentioned that they especially liked the 
range sliders because it helped the participants narrow their focus 
to samples within a given similarity range. 

One participant commented that SEEM would be very helpful for 
analyzing a sample that is similar to previously analyzed samples. 

Participants made extensive use of the relationship matrix, but 
made several requests to improve it. Three participants requested 
some way to search the relationship matrices with some sort of 
plain text or regular expression search to quickly find certain 
printable strings or function calls. Two participants felt like they 
had trouble navigating the relationship matrix and wanted a better 
way of tracking how big the matrix was and how far up or down 
they had scrolled. Two participants also wanted additional 
functionality to filter and sort the relationship matrix. 
Finally, one participant suggested functionality we had already be 
considering: the ability for users to arbitrarily specify which 
samples to compare to the focal sample. This would support the 
use case where users have a sample from an intrusion set that they 
want to compare to other samples from the intrusion set, but none 
of the samples are similar enough to be clustered together. 

5.5 Discussion 
All participants were able to complete the tasks successfully, 
confirming that novice users can learn SEEM and use it to answer 
analysis questions after only a few minutes. SEEM’s flexible 
design allowed users to answer questions in a variety of ways, as 
indicated by the variety of approaches successfully used by the 
participants in Tasks 2 and 3. 

Participants appreciated the range sliders because it allowed them 
to quickly focus their analysis on samples within a given 
similarity range, or combine filters across categories. 

Participants confirmed the samples belonged in a cluster together, 
and thought SEEM would be very helpful to identify similarities 
between the focal sample and previously analyzed samples. This 
confirms that our design supports our initial use case. 

The participants also suggested some enhancements during the 
debriefing session. Participants used the relationship matrix to 
investigate many of their questions, but they asked for a few 
improvements, such as free-text search, among various other 
usability improvements to the relationship matrix. 

At the time of publication, we addressed some of the participants’ 
feedback by adding text to indicate how many rows are in the 



relationship matrix, and by adding the ability to arbitrarily specify 
samples to use as the comparison samples. 

6. CONCLUSION 
This paper presents SEEM, a novel, scalable visualization tool for 
simultaneously comparing a large corpus of malware across 
multiple sets of attributes. In this paper we show how SEEM can 
be used to analyze a malware sample from the APT1 dataset to 
demonstrate how SEEM can be used to generate insight about 
malware. We also conducted a user evaluation that confirms that 
novice users can quickly learn and use SEEM to generate insight 
about a malware sample. The user study also revealed some 
features that users would like to see in future versions of SEEM. 

Future work includes incorporating the user evaluation feedback: 
Adding search functionality to the relationship matrix, better 
sorting in the relationship matrix to show what is in common and 
different between samples, and the ability to visually bookmark 
interesting samples to help users find them. 
We believe SEEM is a general approach for comparing categories 
of elements between sets. For example, comparing Twitter users 
and their sets of hashtags, followers, and followees, or comparing 
stores and the different products they sell broken down by the 
product categories. 

Our main contributions are 1) a scalable system for comparing 
large, categorical subsets of attributes, and 2) a user evaluation of 
SEEM and an example usage scenario showing how this system 
can be used to analyze malware samples. 
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