
SEEM: A Scalable Visualization for Comparing Multiple
Large Sets of Attributes for Malware Analysis

Robert Gove1, Joshua Saxe1, Sigfried Gold2, Alex Long1, Giacomo Bergamo1
1Invincea Labs, 2Zachary Piper

{robert.gove, josh.saxe, sigfried.gold, alex.long, giacomo.bergamo}@invincea.com

ABSTRACT
Recently, the number of observed malware samples has rapidly
increased, expanding the workload for malware analysts. Most of
these samples are not truly unique, but are related through shared
attributes. Identifying these attributes can enable analysts to reuse
analysis and reduce their workload. Visualizing malware
attributes as sets could enable analysts to better understand the
similarities and differences between malware. However, existing
set visualizations have difficulty displaying hundreds of sets with
thousands of elements, and are not designed to compare different
types of elements between sets, such as the imported DLLs and
callback domains across malware samples. Such analysis might
help analysts, for example, to understand if a group of malware
samples are behaviorally different or merely changing where they
send data.

To support comparisons between malware samples’ attributes we
developed the Similarity Evidence Explorer for Malware (SEEM),
a scalable visualization tool for simultaneously comparing a large
corpus of malware across multiple sets of attributes (such as the
sets of printable strings and function calls). SEEM’s novel design
breaks down malware attributes into sets of meaningful categories
to compare across malware samples, and further incorporates set
comparison overviews and dynamic filtering to allow SEEM to
scale to hundreds of malware samples while still allowing analysts
to compare thousands of attributes between samples. We
demonstrate how to use SEEM by analyzing a malware sample
from the Mandiant APT1 New York Times intrusion dataset.
Furthermore, we describe a user study with five cyber security
researchers who used SEEM to rapidly and successfully gain
insight into malware after only 15 minutes of training.

Categories and Subject Descriptors
[Security and privacy]: Intrusion/anomaly detection and
malware mitigation – Malware and its mitigation

[Human-centered computing]: Visualization – Visualization
application domains

General Terms
Security, Human Factors.

Keywords
Computer Security, Malware, Sets, Venn diagrams, Visualization.

1. INTRODUCTION
The huge volume of unique malicious software (malware)
gathered in today's computer security malware repositories are
connected through a dense web of shared attribute relationships.
For example, malware variants often borrow code from one
another, use the same command and control servers, and use the
same graphical images to trick users into executing them.

Over the last decade, researchers and practitioners have
recognized that performing similarity analysis and clustering on
pieces of malware (malware samples) is an important research
problem because it indicates shared provenance and reduces
analyst workload. Researchers have proposed various statistical
and machine learning approaches to automatically compare
malware samples (e.g. [5]). However, these approaches are
limited by a lack of associated visualization techniques that help
analysts understand why these approaches claim that malware
samples are similar or of the same software lineage.

Visual similarity analysis could reveal the complex similarities
and differences between a specific sample, which we call the focal
sample, and the rest of the malware in the corpus, which we call
the comparison samples. With that knowledge, analysts could
leverage previous reverse engineering work performed on the
focal sample's older "relatives," thereby accelerating and adding
information to the reverse engineering process. Alternatively,
analysts may realize that a new malware sample is genuinely new,
i.e. not simply a polymorphic variant of previously observed
malware. Set visualizations could be useful for understanding
similarities and differences between malware if we consider
malware samples to be like sets, malware attributes (e.g. specific
DLLs, like kernel32.dll, or function calls, like ReadFile())
to be like set elements, and categories of attributes (e.g. all the
imported DLLs or all the function calls) to be like subsets. (See
Figure 1.) However, as we describe in Section 2, existing set
visualizations have scalability issues or are not suited to
comparing multiple categories across malware samples.
Specifically, they do not support comparing large numbers of sets,
or they do not support comparing sets with large numbers of
elements, or they do not support comparing elements between sets
based on the category of the element.

As an alternative to these visualization methods, we introduce the
Similarity Evidence Explorer for Malware (SEEM), which we
describe in Section 3. SEEM is a scalable visualization tool for
simultaneously comparing a large corpus of malware across
multiple sets of attributes (such as the sets of printable strings and
function calls). SEEM’s novel design partitions malware attributes
into meaningful categories to compare across malware samples,
and further incorporates comparison overviews and dynamic
filtering to allow SEEM to scale to hundreds of samples while

Approved for public release; distribution is unlimited.

© 2014 Association for Computing Machinery. ACM acknowledges that
this contribution was authored or co-authored by a contractor or affiliate
of the U.S. Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this article, or to
allow others to do so, for Government purposes only.

VizSec '14, November 10 2014, Paris, France
Copyright 2014 ACM 978-1-4503-2826-5/14/11...$15.00
http://dx.doi.org/10.1145/2671491.2671496

allowing analysts to compare thousands of attributes between
samples.

We show the utility of SEEM by first demonstrating in Section 4
how to generate insight about a malware sample from the
Mandiant APT1 New York Times intrusion set, followed by a
usability study in Section 5 where we evaluated SEEM with five
participants. We find that novice SEEM users can quickly learn
SEEM and use it to generate insights about malware. Comments
from the participants confirm our design decisions and that SEEM
addresses real-life malware analysis challenges.

Figure 1. Some comparison tasks require analysts to compare
malware sample attributes (set elements) by their categories
(subsets), such as comparing the printable strings, imported

DLLs, or function calls from different samples.

2. RELATED WORK
Because SEEM can be considered a tool for comparing sets, here
we describe related work on set visualizations, as well as related
work on malware visualizations.

Euler and Venn diagrams are among the most common techniques
for displaying overlaps among sets. These diagrams can show the
elements that belong to each set by drawing the elements inside
the contours, but this suffers scalability issues [25] and becomes
cluttered when there are lots of elements. Some variations use
area to indicate the number of elements in each set instead of
drawing each element [6, 14, 26], but this lacks the ability to see
which elements are in each set.

UpSet [16] scales well to large numbers of elements and it is
designed to visualize the intersections between many different
sets. However, UpSet does not directly support comparing an
individual set to other sets, nor is it clear that UpSet allows users
to compare large numbers of sets.

LineSets [1], Bubble Sets [7], and Kelp diagrams [9], and
KelpFusion [17] are visualizations that rely on set elements being
pre-positioned (e.g. on a map or in a force-directed network
layout) and then drawing lines or contours to indicate set
membership. However, the published examples in those papers
show less than 100 elements distributed across less than 10 sets;
therefore, it is not clear if these approaches would scale to
thousands of elements distributed across hundreds of sets.

Radial Sets [2] and Set’o’grams [11] scale well to dozens of sets
with thousands of elements, but they do not support comparing
multiple sets across multiple categories simultaneously (e.g. they
could support comparing different sets of imported DLLS, but not
comparing different malware samples and the sets of imported
DLLs, printable strings, and function calls from each of the
malware samples). Also, since Set’o’grams require each element
to have its own column, Set’o’grams would have difficulty scaling

to thousands of elements because they could not all fit on a single
screen.

Parallel Sets [3] and Elastic Lists [23] allow users to explore
categorical data and a single set of elements by its different
categories, but these visualizations do not compare multiple sets
by different categories.

Re-orderable matrices [4] can show the elements that belong to
each set, as in Kim et al. [15], but cannot show an overview when
there are thousands of points because the matrix becomes too
large to show on one screen.

There are many examples of automatic malware comparison
research [5, 21], but we are not aware of many visualizations
designed to support the malware comparison process. Quist and
Liebrock [20], Conit et al. [8] and cantor.dust [10] visualize
individual malware samples to aid the reverse engineering
workflow. Trinius et al. use treemaps and thread graphs to
perform comparative analysis on malware with the goals of
identifying malicious software and classifying malicious behavior
[24], but our goal is to understand the similarities and differences
of malware samples.

Saxe et al. [21] use multidimensional scaling to visualize similar
malware samples. Their work incorporates a panel that allows
users to highlight and select samples based on their attributes (e.g.
callback domains). This approach does not directly show users
how many attributes are associated with each malware sample,
nor does it directly show how many attributes are in common
between any pair of samples.

Other approaches represent binary files as an image that can then
be compared to images of other binary files [18] [13], but this
does not expose the attributes of the binaries to users.

3. SYSTEM DESCRIPTION
Figure 2 shows the SEEM interface. The top left of SEEM shows
basic information about the focal sample: its SHA1 and MD5
hashes, the file size, compression ratio, and the dates the sample
was first and most recently uploaded to the system.

3.1 Visualizations
SEEM uses categories to visually compare the focal sample to the
comparison samples. Currently there are nine categories:

1. Predicted capabilities.
2. Printable strings.
3. DLL imports.
4. External function calls.
5. Image resources.
6. Tags applied to samples by system users.
7. IP addresses.
8. Hostnames.
9. Registry keys.

Each category has three visualizations: (1) A similarity histogram
to give an overview of how similar the comparison samples are to
the focal sample, (2) an ordered list of Venn diagrams to visualize
the number of attributes and the overlap in attributes between the
focal sample and each comparison sample, and (3) a matrix
showing the relationship between malware samples and attributes
(see Figure 2). Each comparison sample is compared to the focal
sample on each category, allowing analysts to simultaneously see
how the samples are similar to the focal sample with respect to
each category.

Sample B!Sample A!

• Press any key"•  registry"

• kernel32"•  regapi"

•  lstrcpynW"• CloseHandle" • malloc"
• wsprintfW"

Comparing sets of samples’ attributes, grouping attributes by category"

strings category"

DLLs category"

functions category"

Figure 2. The SEEM interface. Basic information about the sample (SHA1 hash, file size, etc.) is on the top left (A). Underneath (B)

are nine categories (four are shown here), each of which has a similarity axis (C), a list of Venn diagrams (D) for each sample in
view (E), and a relationship matrix (F) that users can open by clicking the “+” button next to the category name. The relationship

matrix for capabilities is colored based on the confidence of the prediction that the sample has the given capability. Users can
paginate through the samples in the Venn diagram list and relationship matrix with previous/next buttons (G).

3.1.1 Similarity Histogram
The similarity histogram (see Figure 2C and Figure 3) shows an
overview of how similar the comparison samples are to the focal
sample, and includes a range slider (Figure 3D) to filter samples
that are outside of the specified similarity range. Combined, these
allow SEEM to compare an arbitrary number of different samples
to the focal sample. Similarity is measured using the Jaccard
index, where A and B are the set of attributes in a given category
from the focal sample and a comparison sample, respectively:

𝐽 𝐴,𝐵 =
|𝐴 ∩ 𝐵|
|𝐴 ∪ 𝐵|

Where |𝐴| is the number of elements in set 𝐴, and 𝐽 𝐴,𝐵 = 1 if
𝐴 ∪ 𝐵 = 0. Each category is visualized in a separate histogram,

allowing analysts to quickly understand how the comparison
samples are distributed across all of the categories. The
histogram’s x-axis is the Jaccard index, where the bars drawn
towards the left represent comparison samples that have high
Jaccard index with the focal sample, and bars drawn towards the
right represent comparison samples with low Jaccard index with
the focal sample.
A range slider at the bottom of each histogram helps analysts to
filter through arbitrarily large numbers of malware samples. Any
sample that is outside of the range for one category is also filtered
out of the other categories as well (see Figure 2).

Figure 3. Similarity histograms for predicted capabilities,

printable strings, and DLL imports. Bar height indicates the
number of comparison samples, and the horizontal position
indicates how Jaccard index with the focal sample. Bar has
three colors: cyan bars (A) are samples that have not been

filtered out, and gray bars (B) are the total number of
comparison samples. Bars become yellow (C) when users

hover over them, and yellow bars appear in the other
similarity histograms to indicate where the comparison

samples in the hovered bar appear in the other similarity
histograms. Hovering on a bar also displays a tooltip with the

number of samples in the bar. Users can adjust the range
sliders (D) for each histogram to filter out samples that are

not within a certain similarity range.

The histogram bars are displayed using 3 colors. The heights of
the cyan bars (Figure 3C) represent the comparison samples that
were not filtered out, and the heights of the gray bars (Figure 3B)
represent the total number of comparison samples (both filtered
and unfiltered). This filtering action is also reflected in the Venn
diagram list and relationship matrix visualizations.
To see where the samples in one bar appear in the other
histograms, users can hover on a bar in the similarity histogram,
and SEEM displays a tooltip that shows users the number of
samples represented by the bar and the Jaccard index (expressed
as a percent) of the samples in the bar. Hovering over a bar on one
category draws yellow bars on the other categories to show how
those samples are distributed on other categories (see Figure 3C).

3.1.2 Venn Diagram List
The Venn diagram list (Figure 2D) shows pages of malware
samples. Each column in the Venn diagram list is a sample. The
angled text at the top of the column is an antivirus engine label,
the sample filename if no antivirus engine label is available, or the
sample’s SHA1 hash if there is no antivirus label or filename. The
comparison samples are sorted in descending order by average
Jaccard index across all nine categories. Clicking the sample name
will refocus SEEM with the clicked sample as the focal sample. If
a user hovers over the sample name, a tooltip pops up that has
additional information about the sample, such as file size and
compression ratio (see Figure 4).

The paginated view shows the 20 comparison samples most
similar to the focal sample, plus the focal sample itself, where
each sample is a column. The first column is the focal sample and
is always in view, regardless of which page of samples users are
on or which filtering operations users perform. Users can click the
right and left arrow buttons to navigate to the next and previous
pages of samples. This list is updated based on filtering performed
using the range sliders on the similarity histograms.

Figure 4. SEEM pops up a new tooltip with additional

information when users hover over a malware sample’s name.

Figure 5. (A) The legend for Venn diagram design. The orange

section at the top represents the attributes only in the focal
sample. The cyan section at the bottom represents attributes

only in the comparison sample. The green section in the
middle represents the attributes in both the focal sample and
the comparison sample. (B) Hovering over a Venn diagram

reveals a tooltip showing the number of attributes in the focal
sample, the comparison sample, and the intersection.

The Venn diagrams show the types of similarity (overlap, strict
subset, disjoint) in each category. See Figure 5A for the Venn
diagram legend.

The height of the Venn diagrams is proportial to the number of
attributes in that category; therefore if one Venn diagram is
shorter than another, then that Venn diagram has fewer distinct
attributes in it. This allows analysts to compare two Venn
diagrams in a category and be able to compare the number of
elements in each set. If a sample has no attributes in that category,
the height of its rectangle in the Venn diagram is zero. For
example, if the focal sample and all comparison samples do not
have any extracted IP addresses, then the Venn diagrams in the IP
address category all have no height. If the focal sample does not
have any extracted IP addresses, but a comparison sample has
three extracted IP addresses, then the focal sample component of
the Venn diagram has no height but the comparison sample’s
component of the Venn diagram does have height.
Hovering on a Venn diagram shows users a tooltip that displays
the number of attributes in the focal sample, the number of
attributes in the comparison sample, and the number of attributes
in the intersection between the two (see Figure 5B).

3.1.3 Relationship matrix
After examining the similarity histograms and the Venn diagrams,
analysts may wish to know exactly which attributes in a category
belong to the samples in view. To do this, analysts click the “+”
button next to the category name to view all of the attributes in
that category (Figure 2F and Figure 6). For example, analysts can
click the button next to “Capabilities” to view the capabilities
relationship matrix that shows all of the capabilities that appear in
any of the comparison samples.

This matrix can be sorted by approximate frequency of the
attribute (e.g. how many samples in the database have the same
printable string), by lexicographical order, or by occurrence in a
specific sample. The relationship matrix for the printable strings
category has an additional column that indicates which printable
strings provide evidence for a given predicted capability, if any.
Sorting helps users navigate the matrix and allows the
visualization to scale to large numbers of elements while still
being useful to users.

If the category has confidence associated with it (e.g. the
confidence of a capability prediction) then the matrix cells are
colored ranging from dark gray, representing low confidence, to
light gray, representing high confidence.

3.2 Linked Views
The similarity histograms are linked to the Venn diagram list,
allowing users to see if samples in a histogram bar are currently in
view in the Venn diagram list, and vice versa. When users hover
on a bar in a similarity histogram, the samples represented by that
bar highlight in the Venn diagram list. Likewise, when users
hover on a Venn diagram, the corresponding bar on each
similarity histogram highlights to indicate the Jaccard index of
that comparison sample from the focal sample.

3.3 Sample Annotation
Users can select samples (either the focal sample or comparison
samples) by clicking the checkboxes next to their names. Next,
users can type a tag name and apply it to the selected samples.
SEEM then updates the “tags” category so that all the
visualizations reflect the new tag.

3.4 Implementation
SEEM is built into Cynomix [12], a web-based system for
analyzing large-scale malware corpora. SEEM is implemented in
HTML, CSS, and JavaScript using the AngularJS and D3
JavaScript libraries. The back-end architecture of Cynomix
consists of a web server built using the Tornado framework and a
MongoDB database that is kept in sync with an Elasticsearch
index for fast faceted search.

The database stores the cluster for each sample, along with the
nearest neighbors for each malware sample (i.e. malware samples
that are at least 50% similar). The database also stores several
attributes of the malware samples, including predicted capabilities
(using the capability detection described by Saxe et al. [22]),
printable strings, DLL imports, external function calls, tags
applied to the sample by Cynomix users, IP addresses, hostnames,
registry keys, and image resources. Predicted capabilities have an
associated score that indicates how much evidence exists to
support the prediction. IP addresses, hostnames, and registry keys
are all extracted from the malware samples by running a regular
expression on the printable strings in the malware samples.
Cynomix collects these attributes through static analysis; dynamic
analysis is planned for future versions.

4. EXAMPLE ANALYSIS
To give an example of how SEEM can be used to analyze a
malware sample, we chose a malware sample from the Mandiant
APT1 dataset as the focal sample to analyze (SHA1 hash
05b8c1f0a4cebf2b05d41b904d4e93660acd9976). There were 31
other samples similar to the focal sample, which defined the
comparison samples used by SEEM. This example illustrates a
real-world use case: After a hacking incident, analysts need to
analyze all suspicious files found on the infected computers and
will begin with one sample to analyze.

By looking at the histograms and the Venn diagram list we
noticed that none of the samples had any images, tags, IP
addresses, hostnames, or registry keys. This allowed us to quickly
focus on comparing capabilities, strings, DLLs, and functions.

Initially we decided to focus on the most similar samples. First we
adjusted the capabilities histogram slider to keep the two bars of
most similar samples, then the strings histogram slider to filter out
samples that do not have similar capabilities and strings (see
Figure 7). By looking at the Venn diagram list we saw that five
samples are extremely similar to the focal sample. We also saw
four other samples that are very similar to the focal sample with
the same DLL imports but a few differences in capabilities,
strings, and functions. All of these samples are also from the
APT1 dataset. We noticed that seven samples have the “plays
audio” capability, which we thought was interesting, so we
applied the tag “look for audio resources” to annotate those seven
samples about additional analysis we would like to perform
outside of SEEM. We also applied the tag “analyze with
05b8c1f0a4cebf2b05d41b904d4e93660acd9976” to the five most
similar samples so that anyone who analyzes those samples might
benefit from reusing the analysis performed on the focal sample.

Then we started looking at the samples that had different strings
by resetting the capabilities histogram slider and by changing the
strings histogram slider to filter out samples with very similar
strings. We sorted the strings relationship matrix by strings that
occur in the focal sample to see which strings were different in the
comparison samples and we noticed that some string differences
were in spelling. So then we sorted the strings relationship matrix
by lexicographical order and noticed lots of misspellings and

typographical errors (see Figure 7). Many differences between the
malware samples were due to spelling and typographical changes.
This could indicate new malware versions with fixes.

Using SEEM we quickly identified the most similar samples and
understood how similar they are to the focal sample. We also
noticed that many differences in printable strings were due to
different spellings of the same strings. Using these insights, we
annotated the samples to help us with the malware analysis triage
process and to see evidence that many of these samples may be
alternate versions of each other.

5. EVALUATION
To evaluate SEEM, we conducted a user evaluation so we can (1)
better understand SEEM’s usability, (2) evaluate whether users
can use SEEM to understand similarities and difference’s between
malware, and (3) identify future work for improving SEEM.

5.1 Participants
We recruited five participants who have malware analysis
experience. The participants have 2 to 14 years experience in
cyber security. All participants were male, and their ages ranged
from 29 to 50 years old. Our goal was to recruit enough
participants to discover the primary usability concerns, and
research suggests that five participants is sufficient [19].

5.2 Experiment Design
Evaluations were performed on a 15-inch MacBook Pro with a
Retina display, 16 GB of RAM, and a 2.6 GHz Intel Core i7
processor. We ran SEEM inside Chrome browser version 35. We
used the APT1 dataset described in Section 4, with sample
05b8c1f0a4cebf2b05d41b904d4e93660acd9976 chosen as the
focal sample the participants should analyze.

5.3 Procedure
All participants took part in the evaluation in separate sessions,
each lasting about 40 minutes. We offered participants a $15 USD
gift card to Starbucks as compensation. Each session consisted of
three consecutive phases: A training phase, an experimental
phase, and a debriefing interview. Prior to the session, each
participant had seen one to three demonstrations of SEEM.

During the training phase, participants read descriptions that
explained SEEM’s visual components and interactive widgets,
then participants performed four training tasks. Participants were
not allowed to proceed to the experimental phase until they
correctly completed all training tasks. In the experimental phase,
participants began by performing three tasks, and then participants
freely explored the dataset for 10 minutes. Participants were asked
to think aloud during the experimental phase. Afterwards,
participants provided verbal feedback in the debriefing phase. The
order of the tasks in the training phase was fixed, but the order
during the experimental phase was different for each participant to
reduce ordering bias.

5.4 Results
5.4.1 Timed Tasks
For Task 1 (“How many samples have the same capabilities as the
focal sample?”), all participants correctly answered the question
in 8 to 26 seconds. One participant answered the question by
visually inspecting the Venn diagrams and correctly identifying
how many samples have the same capabilities. The rest of the
participants adjusted the range slider on the capabilities category
to filter out the samples without the same set of capabilities as the
focal sample and then counted the remaining samples that were
not filtered out.

Figure 6. The relationship matrix showing malware samples that have five different variations on the string "Start shell first."

Figure 7. Analying a sample from the APT1 dataset. Five samples are extremely similar and bear analysis in a lower-level tool such

as IDA Pro to determine their precise differences. Four other samples have the same DLL imports as the focal sample and also
similar sets of capabilities, strings, and function calls.

Task 2 asked participants to answer whether or not the samples
that import the same DLLs as the focal sample also have the same
predicted capabilities and printable strings as the focal sample.
Participants took 15 seconds to 1 minute 8 seconds to answer this
question. All participants answered correctly.
Two participants performed this task by adjusting the range slider
on the DLLs category to filter our samples without the same
DLLs, and then inspecting the histograms on the capabilities and
strings categories to see that some samples do appear similar but
many samples are also very dissimilar to the focal sample in their
capabilities and strings.

One participant used the DLLs histogram slider to filter out
samples with dissimilar sets of DLLs, then looked at the Venn

diagrams for the remaining samples to see that many samples
have additional capabilities and strings not present in the focal
sample, and some also lack capabilities and strings present in the
focal sample.
Another participant began by adjusting the DLLs histogram slider
as the other participants did, and then adjusting the capabilities
and strings histogram sliders to filter out samples with dissimilar
sets of capabilities and strings. The participant noticed that these
last two filtering actions reduced the number of samples in view,
and correctly concluded that many of the comparison samples do
not share the same set of capabilities and strings as the focal
sample.

The other participant also used the DLLs histogram slider to filter
out dissimilar samples, and then opened the capabilities and
strings relationship matrices to see whether the samples had the
same capabilities and strings.

Task 3 caused some confusion in the way the question was
worded (“Of the samples that do not have the same set of DLLs as
the focal sample, describe how the DLLs are different in those
samples.”), which may have caused the task completion times to
be longer (times ranged from 48 seconds to 2 minutes and 33
seconds). At first one participant thought the question was asking
about DLL function calls before he asked for clarification.

All but one participant used the DLLs histogram slider to filter out
samples that have the same DLLs as the focal sample, and then
opened the DLL relationship matrix to examine which samples
import which DLLs.

The other participant did not use the range slider and immediately
started using the DLL relationship matrix while flipping from the
first page of samples to the second page to examine all of the
samples and using the Venn diagrams to visually check which
comparison samples have the same set of DLLs as the focal
sample.

5.4.2 Free Exploration
Participants often used the predicted capabilities to get a general
idea of the samples, indicating that users are interested in
automatic capability detection.

The participants made several observations about the data while
exploring it with SEEM. Many of the observations were made
possible because SEEM displays all of the samples’ attributes
simultaneously, allowing users to see all of the attributes of the
samples within the cluster.

One participant discovered the same five very similar samples we
noted in Section 4. He used the range sliders to filter out samples
that are not similar. He also hovered over the sample names to get
additional information, and found that all the samples have the
same file size, providing further evidence that the samples are
extremely similar. This is a very important observation that we
were hoping users could make by using SEEM.

All five participants noticed that none of the samples had any
associated images, tags, hostnames, IP addresses, or registry keys.
They accomplished this by opening the relationship matrix for
each category and seeing that it was empty. This is the same
observation we made in Section 4.

One participant noticed several strings that he felt indicated that
the samples were correctly clustered together, such as unique
looking error messages and text with misspellings and
grammatical errors.

All participants looked at the DLLs, function calls, and strings
categories to guess at the capabilities of the focal sample and
comparison samples. Participants made several other observations
about the capabilities of the samples, either from the capabilities
category or by inferring from the DLLs, function calls, and
printable strings categories: One participant commented that the
predicted capabilities seem like standard malware capabilities.
One participant noticed that the focal sample has the capability
“modifies Windows services” along with all of the comparison
samples. That participant, as well as another participant, found
several printable strings and function calls that provide evidence
that those samples modify Windows services.

While examining the DLLs category, one participant commented
that it was unusual that none of the samples appear to import

winsock.dll despite the fact that some samples import urlmon.dll
and some samples have the “downloads files” predicted
capability. This is something he said he would want to explore
deeper if he were to conduct further analysis.

While looking at the comparison samples, one participant noticed
a comparison sample that is similar to the focal sample but has an
additional predicted capability: uploads files. The participant
found this interesting, and suggested that the next step in a deeper
analysis would be to see if that comparison sample communicates
with the focal sample to exfiltrate data from the victim’s
computer.

5.4.3 Debriefing
All participants appreciated SEEM’s design and were very
positive about its usability and utility, with comments such as
“[the developers] have done a good job,” and “I feel like [SEEM]
is pretty useful.” Two participants also said that they would like to
use SEEM in conjunction with a disassembler like IDA Pro to
help direct where to look in the samples.

Two of the participants mentioned that they especially liked the
range sliders because it helped the participants narrow their focus
to samples within a given similarity range.

One participant commented that SEEM would be very helpful for
analyzing a sample that is similar to previously analyzed samples.

Participants made extensive use of the relationship matrix, but
made several requests to improve it. Three participants requested
some way to search the relationship matrices with some sort of
plain text or regular expression search to quickly find certain
printable strings or function calls. Two participants felt like they
had trouble navigating the relationship matrix and wanted a better
way of tracking how big the matrix was and how far up or down
they had scrolled. Two participants also wanted additional
functionality to filter and sort the relationship matrix.
Finally, one participant suggested functionality we had already be
considering: the ability for users to arbitrarily specify which
samples to compare to the focal sample. This would support the
use case where users have a sample from an intrusion set that they
want to compare to other samples from the intrusion set, but none
of the samples are similar enough to be clustered together.

5.5 Discussion
All participants were able to complete the tasks successfully,
confirming that novice users can learn SEEM and use it to answer
analysis questions after only a few minutes. SEEM’s flexible
design allowed users to answer questions in a variety of ways, as
indicated by the variety of approaches successfully used by the
participants in Tasks 2 and 3.

Participants appreciated the range sliders because it allowed them
to quickly focus their analysis on samples within a given
similarity range, or combine filters across categories.

Participants confirmed the samples belonged in a cluster together,
and thought SEEM would be very helpful to identify similarities
between the focal sample and previously analyzed samples. This
confirms that our design supports our initial use case.

The participants also suggested some enhancements during the
debriefing session. Participants used the relationship matrix to
investigate many of their questions, but they asked for a few
improvements, such as free-text search, among various other
usability improvements to the relationship matrix.

At the time of publication, we addressed some of the participants’
feedback by adding text to indicate how many rows are in the

relationship matrix, and by adding the ability to arbitrarily specify
samples to use as the comparison samples.

6. CONCLUSION
This paper presents SEEM, a novel, scalable visualization tool for
simultaneously comparing a large corpus of malware across
multiple sets of attributes. In this paper we show how SEEM can
be used to analyze a malware sample from the APT1 dataset to
demonstrate how SEEM can be used to generate insight about
malware. We also conducted a user evaluation that confirms that
novice users can quickly learn and use SEEM to generate insight
about a malware sample. The user study also revealed some
features that users would like to see in future versions of SEEM.

Future work includes incorporating the user evaluation feedback:
Adding search functionality to the relationship matrix, better
sorting in the relationship matrix to show what is in common and
different between samples, and the ability to visually bookmark
interesting samples to help users find them.
We believe SEEM is a general approach for comparing categories
of elements between sets. For example, comparing Twitter users
and their sets of hashtags, followers, and followees, or comparing
stores and the different products they sell broken down by the
product categories.

Our main contributions are 1) a scalable system for comparing
large, categorical subsets of attributes, and 2) a user evaluation of
SEEM and an example usage scenario showing how this system
can be used to analyze malware samples.

7. ACKNOWLEDGMENTS
This work was funded by the Defense Advanced Research
Projects Agency (DARPA) award FA8750-10-C-0169. The views
expressed are those of the author(s) and do not reflect the official
policy or position of the Department of Defense or the U.S.
Government. We thank our user study participants for their time
and insight, and Konstantin Berlin and David Slater for valuable
feedback and discussion.

8. REFERENCES
[1] Alper, B., Riche, N.H., Ramos, G. and Czerwinski, M. 2011.

Design study of LineSets, a novel set visualization technique.
TVCG. 17, 12 (Dec. 2011), 2259–67.

[2] Alsallakh, B., Aigner, W., Miksch, S. and Hauser, H. 2013.
Radial sets: interactive visual analysis of large overlapping
sets. TVCG. 19, 12 (Dec. 2013), 496–505.

[3] Bendix, F., Kosara, R. and Hauser, H. 2005. Parallel sets:
visual analysis of categorical data. Symposium on
Information Visualization (2005), 133–140.

[4] Bertin, J. 1981. Graphics and Graphic Information
Processing. de Gruyter.

[5] Briones, I. and Gomez, A. 2008. Graphs, Entropy and Grid
Computing: Automatic Comparison of Malware. Virus
Bulletin (2008), 1–12.

[6] Chow, S. and Ruskey, F. 2004. Drawing area-proportional
Venn and Euler diagrams. Graph Drawing (2004), 466–477.

[7] Collins, C., Penn, G. and Carpendale, S. 2009. Bubble sets:
revealing set relations with isocontours over existing
visualizations. TVCG. 15, 6 (2009), 1009–1016.

[8] Conti, G., Dean, E., Sinda, M. and Sangster, B. 2008. Visual
reverse engineering of binary and data files. VizSec (2008),
1–17.

[9] Dinkla, K., van Kreveld, M.J., Speckmann, B. and
Westenberg, M. a. 2012. Kelp Diagrams: Point Set
Membership Visualization. Computer Graphics Forum. 31,
3pt1 (Jun. 2012), 875–884.

[10] Domas, C. 2012. The Future of RE: Dynamic Binary
Visualization. Derbycon (2012).

[11] Freiler, W., Matković, K. and Hauser, H. 2002. Interactive
visual analysis of set-typed data. TVCG. 14, 6 (2002), 1340–
1347.

[12] Gove, R., Bergamo, G., Saxe, J., Long, A. and Gold, S. 2014.
Cynomix: Multi-Resolution Visualization of Malware at
Scale for Insight and Triage. Malware Technical Exchange
Meeting (2014).

[13] Han, K., Lim, J.H. and Im, E.G. 2013. Malware analysis
method using visualization of binary files. Research in
Adaptive and Convergent Systems (2013), 317–321.

[14] Kestler, H.A., Muller, A., Kraus, J.M., Buchholz, M., Gress,
T.M., Liu, H., Kane, D.W., Zeeberg, B.R. and Weinstein,
J.N. 2008. VennMaster: Area-proportional Euler diagrams
for functional GO analysis of microarrays. BMC
Bioinformatics. 9, 67 (2008).

[15] Kim, B., Lee, B. and Seo, J. 2007. Visualizing Concordance
of Sets. Interacting with Computers. 19, 5-6 (2007), 630–
643.

[16] Lex, A., Gehlenborg, N., Strobelt, H., Vuillemot, R. and
Pfister, H. 2014. UpSet: Visualization of Intersecting Sets.
TVCG. (2014).

[17] Meulemans, W., Riche, N.H., Speckmann, B., Alper, B. and
Dwyer, T. 2013. KelpFusion: a hybrid set visualization
technique. TVCG. 19, 11 (Nov. 2013), 1846–1858.

[18] Nataraj, L., Karthikeyan, S., Jacob, G. and Manjunath, B.S.
2011. Malware images: visualization and automatic
classification. VizSec (2011).

[19] Nielsen, J. 1993. A mathematical model of the finding of
usability problems. Proceedings of the INTERACT’93 and
CHI'93. (1993), 206–213.

[20] Quist, D.A. and Liebrock, L.M. 2009. Visualizing compiled
executables for malware analysis. VizSec (2009), 27–32.

[21] Saxe, J., Mentis, D. and Greamo, C. 2012. Visualization of
shared system call sequence relationships in large malware
corpora. VizSec (New York, New York, USA, 2012), 33–40.

[22] Saxe, J., Turner, R. and Blokhin, K. 2014. CrowdSource:
Automated Inference of High Level Malware Functionality
from Low-Level Symbols Using a Crowd Trained Machine
Learning Model. MALCON (2014).

[23] Stefaner, M. and Muller, B. 2007. Elastic lists for facet
browsers. DEXA (2007), 217–221.

[24] Trinius, P., Holz, T., Gobel, J. and Freiling, F.C. 2009.
Visual analysis of malware behavior using treemaps and
thread graphs. VizSec (2009), 33–38.

[25] Verroust, A. and Viaud, M. 2004. Ensuring the drawability
of extended Euler diagrams for up to 8 sets. Diagrammatic
Representation and Inference (2004), 128–141.

[26] Wilkinson, L. 2012. Exact and approximate area-
proportional circular Venn and Euler diagrams. TVCG. 18, 2
(Feb. 2012), 321–31.

