
DAVAST: Data-centric System Level Activity Visualization

Tobias Wüchner, Alexander Pretschner, Martín Ochoa
Technische Universität München
Garching bei München, Germany

{wuechner,pretschn,ochoa}@cs.tum.edu

ABSTRACT
Host-based intrusion detection systems need to be comple-
mented by analysis tools that help understand if malware or
attackers have indeed intruded, what they have done, and
what the consequences are. We present a tool that visualizes
system activities as data flow graphs: nodes are operating
system entities such as processes, files, and sockets; edges
are data flows between the nodes. Pattern matching identi-
fies structures that correspond to (suspected) malicious and
(suspected) normal behaviors. Matches are highlighted in
slices of the data flow graph. As a proof of concept, we
show how email worm attacks, drive-by downloads, and data
leakage are detected, visualized, and analyzed.

1. INTRODUCTION
Because malware is increasingly using design-time and

run-time obfuscation techniques, signature-based detection
approaches are widely believed to require complementation
by behavior analysis. We consider host-based anomaly and
malware detection on the grounds of quantitative data flow
graphs (QDFGs, [10]). In this approach, the runtime behav-
ior of a system is monitored and represented as a data flow
graph. Nodes are OS-level sources and sinks such as files,
registry entries, sockets, and processes. As system calls—
in our implementation, Windows API calls—are executed,
data is transferred in-between the system entities, leading
to directed edges in-between the nodes. For discrimination
purposes, we found it useful to record not just the fact that
data has flowed [11] but also how much data has flowed [4,
10]. This information can easily be deduced from the sys-
tem calls. For instance, writing to a file or a socket always
involves a number of bytes or blocks. Since reading from
or writing to a file or a socket usually involves multiple re-
spective system calls, it turned out to be useful to aggregate
the amounts of data on the edges: rather than creating one
edge per write system call from process p to file f , we cre-
ate one edge for all subsequent writes from p to f . These
behavior graphs nonetheless grow quickly, and in order to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
VizSec’14, November 10 2014, Paris, France.
Copyright 2014 ACM 978-1-4503-2826-5/14/11 ...$15.00.
http://dx.doi.org/10.1145/2671491.2671499.

ensure scalability, we concentrate on slices of these graphs
that correspond to a fixed but arbitrary time span.

These graphs can be analyzed both at runtime and after
the fact, by analyzing logs. To automate the analysis, we
specify rules that describe typical patterns for both malware
and “normal” behaviors. These rules are both described ex-
plicitly using a special domain-specific language (e.g., if a
process spawns multiple children, and each of these children
does the same, this is suspicious behavior) and, using data
mining techniques, inferred from large bodies of malware
behavior. Using these two sets of rules, we perform pattern
matching by checking graph monomorphisms. This yields a
certain confidence if one specific system run—or rather, the
projection of that run to the chosen time window—exhibits
one or more malware or normal behavior patterns.

Not only because of the problem of false positives, intru-
sion detection alone is usually not sufficient. Instead, system
analysts are also interested in understanding what the (sup-
posed) malware has done, and how critical this is. This is
why we propose to represent the above mentioned QDFGs
visually and allow the analyst to browse through the graph,
step forward and backward in time, see which patterns have
been identified, and where which data may have flowed as
the consequence of an intrusion. Our system allows to de-
tect multiple benign and malign activities at the same time.
It represents the findings in a purpose-specific multi-view
setting. The analyst can choose a tree-view (decomposi-
tion view of inferred high-level activities such as browsing
or sending email); a timeline view (highly abstracted big
picture of benign vs. malign activities over time without
hierarchical decomposition); a statistics view (highly aggre-
gated view of frequency/relation of benign and malicious
activities over time); and a graph view which allows for the
in-depth analysis of observed activities (follow flows over
time and perform reachability analyses).
Problem: As security analysts, we need to perform run-
time and ex-post detection, tracking, and analysis of benign
and malign activities at the host-level over time. This is rel-
evant for monitoring attackers or malware on compromised
systems; for honeypots; for sandboxes; for online forensics.
Solution: We represent system activities (interaction of
processes with system entities using the Windows API) as
aggregated QDFGs and identify malign and benign sub-
structures. We visualize information relevant to the security
analyst as graphs, activity trees, and timelines.
Contributions: Because it does not take the perspective
of (quantitative) data flows, related work does not allow to
track behavior and interactivity over time and/or to scope

and filter relevant flows. The direct abstraction of raw events
into aggregated data flows increases data sparsity and thus
performance. Moreover, inferring abstract high-level activi-
ties through identification of characteristic sub-graphs allows
filtering noise, or uninteresting behavior. Our multi-view
representation allows purpose-specific filtering of informa-
tion. In contrast to most related work we do not depend on
system emulation or virtualization: our approach is lean as
we only need to install a monitor service that automatically
sends events to an analysis and visualization component.

2. RELATED WORK
Malware analysis and intrusion detection can be performed

from a network perspective by analyzing network traffic or
from a host perspective by analyzing interactions within a
system. Graph-based approaches have been widely inves-
tigated for visualizing network security aspects [3, 2], but
have been barely researched in the context of host-level se-
curity mechanisms. In the following we thus concentrate
on work that is closest to ours: visualization techniques for
host-based behavioral (dynamic) intrusion analysis.

Xia et al. [12] propose a visualization technique based on
system monitoring information that depicts the behavior of
processes in a period of time as trees, including spawned
processes and interaction with other system entities such as
files read. If an entity such as a file is accessed by several
processes, the file will appear in all subtrees of the respective
processes. To help human analysts interpreting the results,
they propose a technique that allows to highlight entities to
which there is a potential data flow from a declared tainted
source. Different from our approach, they do not consider
quantities in the flows, and there is no visual aggregation
in the form of graphs, which in our experience is crucial
for human interpretation. Furthermore, in contrast to our
work, they do not perform any kind of activity inference to
annotate low-level interactions with high-level semantics.

Trinius et al. [7] focus exclusively on samples already
classified as malware. They run the samples in a sand-
box and depict their behavior using treemaps and thread
graphs which makes their classification and understanding
more amenable. Treemaps is basically a visual representa-
tion of the proportion of certain API calls executed by the
malware (such as create socket or load dll). Thread graphs
give a chronologically representation of the operations per-
formed. In contrast, our approach logs entire system runs,
and, based on a weighted graph representation of data flows,
classifies interaction sequences as malign or benign.

Quist et al. [6] use dynamic analysis to monitor the con-
trol flow of single processes and then visualize their results
by coloring nodes depending on the context of the original
program and thickening edges according to the number of
executions of that particular sub-path. They differ from our
work as their scope is on data flows within processes (mem-
ory accesses), whereas our work has a system wide view.

Other works such as [5, 9] use visualization techniques
for the binaries themselves. This visualization however is
not meant to be used by humans, but rather help during
detection and declassification by comparing bitmaps.

To the best of our knowledge, our work is the first to
consider the visualization of quantitative data flows between
system entities in the form of weighted graphs, together with
heuristics that interpret the context of flows to help human
analysts interpret the presented results.

3. PRELIMINARIES
We study malicious processes by analyzing QDFGs that

represent a system’s data flow activities within a specified
time frame. Data flow activities in QDFGs abstract from
the behavior and interaction of all processes and resources
in a system. We use a generic quantitative data flow graph
model [10] that captures all aggregated and quantified data
flows (edges) between interesting entities (nodes) in a sys-
tem, such as processes, files, or sockets. The edges are di-
rected and timestamped and intuitively reflect transfers of
specific data quantities.

QDFGs are incrementally built on the basis of data flow
relevant system events, e.g. functions that read data from
a file or write data to a socket. At runtime, events are
intercepted by monitors which interpret the data flow se-
mantics and perform corresponding graph updates such as
the creation or modification of nodes or edges. One QDFG
describes all data flow activities of a system that happened
during a specific time interval.

We simplify QDFGs at creation time by aggregating se-
mantically related data flows between pairs of nodes through
summation of the data amount on the respective edges rather
than creating one distinct edge per event. Space limitations
prevent a formal definition; see [10] for the details.
Instantiation. To instantiate the abstract QDFG model
for a specific system context, we map it to concrete resources
and events in this environment. In this paper, the execution
environment is that of typical Windows operating systems.

The following system resources are relevant for both, ma-
lign and benign data flow behavior: Processes interact with
all other relevant system entities in a way that they are
either sources or sinks of flows from or to other Registry,
Socket or Process nodes. In the examples of Section 4.2.4,
process nodes will accordingly be labeled by P, file nodes by
F, socket nodes by S, and registry nodes by R.

We also need to map all data flow relevant events. These
are all Windows API functions that lead to a data flow be-
tween the above system entities. This includes functions to
interact with file system resources like ReadFile or WriteFile
to functions to send or receive data to or from a socket like
the Winsock recv and send functions. For details, see [10].
Activity and Malware Detection. We do not only want
to model low-level interactions as data flows, but also to give
more high-level semantics to sequences of flows and thus to
sub-graphs. We achieve this by specifying data flow pat-
terns, i.e., characteristic sub-graphs that are known to match
high-level benign activities like browsing or emailing; or ma-
lign activities such as an email worm, or a drive-by malware
infection. These patterns are either defined manually by hu-
man security experts, or automatically extracted by mining
sampled graphs that represent characteristic activities.

This results in a repository with patterns for benign and
malign activities that are interesting from the security ana-
lyst’s perspective. We then make use of a modified version
of the the VF2 algorithm [1] which checks monomorphisms
between (sub-)graphs. This allows us to detect patterns
in unknown QDFGs. If patterns match, we annotate sub-
graphs of new QDFGs with the respective high-level activ-
ity semantics. In this way, we can trace activities through
different layers of abstraction as a basis for all subsequent
visualization steps.

4. APPROACH
Our approach is based on two pillars: i) the interception

of system or specific API call activities in a system and their
interpretation as data flows, aggregated in form of data flow
graphs, and the re-identification of known benign and ma-
lign data flow patterns in these graphs; ii) a multi-view rep-
resentation of the captured system activities, enriched and
annotated with context information and inferred high-level
interpretations of low-level system call activities on the basis
of defined data flow patterns.

We see good arguments that our data centric system-wide
view on system interactions is more intuitive to human an-
alysts than approaches that focus on raw uninterpreted sys-
tem calls without context information. By abstracting from
concrete system calls we can achieve a significant reduction
of data complexity and are able to filter activities that are
more likely to pertain to relevant system activities from less
relevant ones. The system-wide data flow perspective fur-
thermore not only allows for identifying known (benign or
malign) activity patterns or activity anomalies. It also en-
ables analysts to perform more far-reaching ex-post analyses
by tracking the flow of data from or to suspicious processes
to e.g. assess the extent potential damages or estimate the
amount of potentially leaked data.

Finally, our multi-view visualization concept aims at rep-
resenting all relevant information that can be obtained from
the inference and analysis steps in a purpose-specific way.
This allows us to provide the right level of information gran-
ularity and abstraction for different analysis use cases. Our
tool can exclusively present a coarse-grained timeline view
of all captured activities for a quick overview on the system
state; or a detailed data flow graph based visualization of
all activities during a defined time interval for an in-depth
analysis of detected malign and benign activities.

4.1 Architecture
The DAVAST system consists of two subsystem, an event

monitoring component deployed at a to be monitored sys-
tem, and the actual DAVAST analysis and visualization sys-
tem running on the analyst’s side (Figure 1).

The event monitor component intercepts all relevant Win-
dows API calls issued by any process in the monitored sys-
tem and then either forwards these events to the DAVAST
system in real-time, or stores them locally for offline pro-
cessing in form of event trace logs (more details in [11]).

In consequence, DAVAST supports two operation modes:
In the online mode, the DAVAST system continuously re-
ceives and processes events sent from a monitored system;
and analyzes and visualizes them on the fly. In the offline
mode, DAVAST allows to load previously recorded event
traces for ex-post analyses.

We implemented the two distinct operation modes to an-
ticipate the requirements of several typical security analysis
tasks. The online mode is well-suited for online forensic pur-
poses like analyzing the activities on a infected system, in
order to assess whether it has been infected by a malware
or compromised by an attacker and to analyze attacker or
malware behavior.

The offline mode is better suited for use cases where per-
manent human observation and analysis of system activities
is not necessary. Examples include settings where the moni-
tor component is permanently installed on workstations that
are prone to be attacked or infected by malware, servers that

 Analysis
 EngineVisualizer

Event
Monitor

Data Flow
Events

Pattern
Matcher

QDFGs

 Annotated
QDFGs

QDFG Graph
Splitter

Raw Events

Event
Interpreter

Graph
Builder

Graph View

Patterns

Activity
Model

Activity Tree View

Statistics View

Timeline View

Event Log

Monitor

Figure 1: Architecture

offer important services or host sensitive data, or dedicated
honeypots. In such cases, the permanently installed moni-
tor can be configured to continuously store all intercepted
system calls of the monitored systems at a secured location.
Later on, they can be batch-processed by DAVAST’s anal-
ysis engine in defined time intervals. If the engine then de-
tects suspicious data flow patterns in the graphs built from
these logs, they are flagged for further analysis by a human
analyst. The analyst can then use the DAVAST visualizer;
in order to manually verify the reported suspicion, to elimi-
nate false positives, or to perform further-reaching analysis
steps. In this way, the involvement of expensive human an-
alysts can be reduced. At the same time, it is possible to
refine the automated pattern-detection-based analysis with
a more intelligent and flexible manual analysis by an expe-
rienced human operator.

The architecture of the DAVAST system is depicted in
Figure 1. Depending on the operation mode, raw system
call events are received from the Event Monitor component,
or they are loaded from a recorded Event Log. These events
are then interpreted by the Event Interpreter with respect
to their data flow semantics and forwarded to the Graph
Builder that aggregates them into QDFG (Section 3).

Despite event aggregation and graph simplification steps,
real-world QDFGs quickly grow large with several thousand
nodes end edges. For efficient processing and visualization
that is comprehensible to human operators, DAVAST uses
a Graph Splitter component. It splits the full graph into
approximately equal-sized graph slices that capture the ac-
tivities of a configurable time interval.

After splitting, the QDFG slices are forwarded to the Pat-
tern Matcher component. This component tries to match
each slice against a list of loaded predefined data flow Pat-
terns that pertain to known benign or malign activities, as
discussed in Section 3. This step is at the core our approach,
as it annotates matching sub-graphs of the QDFG slices with
inferred high-level activities. Enriching QDFGs with high-
level semantics allows to trace between different levels of
abstraction for detected activities, from a high-level activity
description down to corresponding low-level sub-graphs.

The annotated QDFG slices are then pushed to the Ac-
tivity Model, along with additional context information like
corresponding time intervals, hierarchical relations between
different (sub-)activities, level of confidence of the predicted
activity, and a flag whether it is considered malign or benign.
Finally, the different views of the Visualizer component vi-
sualize projections of the data stored in the Activity Model.

4.2 Visualization and Interaction
The purpose of DAVAST’s visualization concept is to of-

fer the human operator just the right level of granularity
and abstraction that he needs for a specific security analysis
task. To achieve this, the Visualizer of DAVAST is imple-
mented as a plug-in system. Plug-ins can access the Activity
Model and even manipulate it to some extent. The current
DAVAST prototype comprises four distinct views that aim
at different typical security analysis tasks and goals. Be-
cause of defined interfaces and a clear Model-View-Controller
architecture, it is comparably easy to extend DAVAST with
additional views.

The views themselves are projections of the Activity Model
data as they usually only load specific types and dimensions
of information from the model. The Activity-Tree View for
example uses the inferred high-level activity semantics and
the information about respective activity relations and hi-
erarchies and association of activities to time intervals from
the model. On the other hand, it ignores the structure of
the respective QDFG slices. In contrast, the Timeline View
uses information about top-level activities, and ignores hi-
erarchical relations.

Due to the shared data model, all views are connected to
each other. This allows traceability through different repre-
sentations and abstractions of activities. For instance, if a
user clicks on one top-level activity in the Timeline View,
the corresponding top-level event in the Activity-Tree View
is highlighted to visually connect multiple representations of
the same concept. Correspondingly, if the user double-clicks
on an activity in the Activity-Tree View, the system opens
a Graph View window that visualizes the graph slice that
corresponds to the selected activity.

4.2.1 Activity Tree View
The purpose of the Activity-Tree View is to visualize the

hierarchical relation between different activities. It depicts
the list of time intervals, stored in the Activity Model, each
denoted by a time interval number, a start, and an end time,
and populates each time interval item with the activities as-
sociated with this interval. Instead of representing all con-
tained activities in a flat way, the Activity-Tree View hier-
archically nests related activities according to the activity
hierarchy information stored in the Activity Model.

Figure 1 shows an example of such a decomposition where
DAVAST detected a network activity within time interval 4.
The corresponding more specific sub-activities indicate that
this network activity in fact was a browsing activity, further
refined into HTTP and HTTPS activities.

DAVAST colors activities in green if they pertain to be-
nign activities, and in red if they relate to known malicious
ones. For each activity, we show a prediction confidence level
that represents the number of occurrences of the correspond-
ing activity data flow pattern in the associated QDFG slice.
If DAVAST identified multiple distinct activities during one
time interval, this confidence number allows the human ana-
lyst to reason about the dominance and temporal proportion
of one specific activity with respect to the other activities
within the same time frame.

The Activity-Tree View concept is useful in situations
where a human analysts wants to get a coarse-grained o-
verview of all captured activities, with the possibility to get
more detailed information about specific activities on de-
mand.

Figure 2: Activity-Tree View

Figure 3: Timeline View

By default, DAVAST initially only shows the top-level ac-
tivities within each time frame and hides all sub-activities.
These can be decomposed step-by-step along the hierarchy
by expanding the respective sub-activities. Moreover, as
mentioned before, the analyst can always open the respec-
tive Graph View to analyze the corresponding QDFG slice
and thus the lowest level of interaction.

An example for such a setting is a scenario where the
human analysts wants to analyze the system behavior of a
system that he suspects to be compromised, but does not
exactly know how and when it was attacked. Even if no
known malign pattern matched one of the QDFG slices, the
analyst can step through the time intervals and decompose
interesting activities to isolate and then further analyze po-
tential infection or attack entry points.

4.2.2 Timeline View
The purpose of the Timeline View is to give a human

analyst a quick overview on the “healthiness” of a system.
In contrast to the Activity-Tree View, the Timeline View

does not show hierarchical relationships between detected
activities. However, it allows a more convenient way to
browse through the timeline and get an overview of the pro-
portion of potentially benign and malign activities over time.

To that end, the Timeline View contains a view where
top-level events stored in the Activity Model are visualized
in a chronological order. Four timeline band controls allow
the user to browse through the timeline with various degrees
of precision. The top-most timeline band depicts and con-

trols the seconds of the timeline, the one below depicts the
minutes, followed by the bands relating to hours and days.

Similar to the Activity-Tree View, the system highlights
potentially malicious activities in red, and benign ones in
green. A colored bar visualizes the absolute event dura-
tion, independent of time intervals, whereas the Activity-
Tree View only depicts the relative duration of an activity
within the considered slice of the graph.

Multiple activities during the same period of time are
stacked on each other. The activity with the highest confi-
dence level or dominance is placed on top. Activities with
lower dominance are placed below, in a descending order.

A zooming function allows the user to control how many
activities are displayed on the view panel at one time to e.g.
get a coarse birds-eye view on the overall system health.

Figure 3 shows a Timeline View of a potentially infected
system. In this example we can see that both a benign net-
work and a malign RemoteShell activity started on
10.07.2014 05:53:03, and that the malign activity lasted for
about 7 seconds, whereas the benign network activity was
ongoing.

4.2.3 Statistics View
The intention of the Statistics View is to provide highly

aggregated statistical information about all activities de-
tected within the monitored period of time. This allows
human analysts to quickly identify anomalies in the activ-
ity profile that are likely to correlate with unwanted system
behavior, as a consequence of attacks or infections.

In a nutshell, this view provides information to analysts
to perform manual visual anomaly detection. This extends
DAVAST’s “hard” pattern matching functionality, based on
fixed data flow patterns, with “soft” human anomaly detec-
tion capabilities, primarily based on intuition.

To this end, the Statistics View visualizes the proportion
between the different detected activities over time (usually,
more than one activity is taking place at a time). The x-
axis represents the time interval number as defined in the
Activity Model. The y-axis depicts the relative proportion of
one event type in comparison to all other since the beginning
of the monitoring period. More precisely, the proportion
is defined as the number of occurrences of events assigned
to a given activity type divided by the absolute number of
occurrences of all events in the observation period.

Figure 4 depicts the statistics of a typical browsing ses-
sion. The browsing session starts with an activity peak that
reflects a database reading access of the browser. This is
the browser initialization phase where configuration data
is loaded from a local file-based database. Subsequently,
we can see that the browsing session constantly consists of
about 45% retrieval of pictures via HTTP, of about 30% re-
trieval of JavaScript code, and of less than 5% HTTPS com-
munication and interaction with the local browser database.

Due to the highly aggregated way of representing activity
information, this views is a good starting point for foren-
sic investigations. In a forensic scenario, a security analyst
can use the Statistics View to spot anomalies in the oper-
ation of a monitored system with respect to isolated time
intervals that potentially contain attacker or malware activ-
ity. Examples of such anomalies include irregularly dom-
inant HTTPS activity of an enterprise workstation during
non-working lunch time or other non-working hours. During
these hours, it can with some confidence be ruled out that

Figure 4: Statistics View

the activities are caused by legitimate usage.
Even if no explicitly defined malicious data flow pattern

matched the underlying QDFGs, such an initial suspicion, as
consequence of a visually identified behavioral anomaly, can
still be the starting point for more detailed investigations
using the Activity-Tree View or the Graph View.

4.2.4 Graph View
The Graph View is DAVAST’s most central view as it

provides a visualization of the core QDFG-based model that
captures all system interactions during the monitored period
of time. The Graph View provides the highest level of detail
and most-fine grained visualization to the human analyst.

Its goal is to provide information about all low-level in-
teractions in a detailed way, but thanks to the data flow
abstraction, in a concise and comprehensible manner. To
access the Graph View, the user can either double-click on
a (sub-) activity in the Activity-Tree View to only visual-
ize the graph slice that pertains to a specific time interval
(Fig. 5c), or open the full graph view that visualizes the
QDFG of the entire monitored time span (Fig. 5a).

The reason for this distinction is that QDFGs can become
huge. In many cases their sheer size renders them useless
to be analyzed by humans if they are visualized in entirety.
While the full graph view is good to get an overview on
the entire system interaction landscape and to quickly track
interactions across time interval boundaries, the time inter-
val graph view is more suited to analyze specific interac-
tions within a bounded period of time. These time interval
boundaries can be enlarged and shrinked at runtime. This
gives users full control on the amount of visualized data flow
interactions within one window.

For the same reason, the Graph View features a special
zooming control in the lower right corner of the graph view
window that allows to conveniently zoom in and out within
a full graph or a graph slice(Fig. 5a). For higher zooming
degrees an embedded mini-map that always shows the entire
graph context with the currently zoomed part of the graph
highlighted limits the risk of the user from getting lost while
browsing through the graph (Fig. 5b).

To give the graph visualization an intuitive appearance,
we use a modified linlog layouting algorithm that arranges
the nodes and edges in a way that the graph builds so-
called process islands. These refer to small circle-shaped

(a) Full graph (b) Graph zoomed to single process island

(c) Graph slice showing one time interval (d) Graph slice showing node details

Figure 5: Graph View

sub-graphs of closely connected nodes that pertain to the
interactions of one specific process. In these sub-graphs the
node in the center of the circle represents the currently act-
ing process. Passive resources that this process interacts
with, including files, sockets, or registry keys, are located on
the periphery of the circle.

We visualize the amount of data by the edge’s thickness.
This gives the human analyst additional means to assess
the importance and consequences of a specific sequence of
interactions on the basis of transferred data amounts. In
forensic use-cases, for instance, this helps the analyst assess
the dimension of a potential data leakage. Edges are also
labeled with the time stamps of the underlying data flow
events that were aggregated into that edge.

As can be seen in Figure 5a, the different process islands
are sparsely interconnected. This is a result from processes
comparably rarely exchanging data with each other, while
they more often interact with distinct sets of passive sys-
tem entities. If processes exchange data with each other,
this rarely happens through direct memory access between

communication partners, but much more often via shared
files, or socket communication. In the graph, this is repre-
sented by intermediate socket or file nodes between pairs of
communicating processes.

To relate high-level activities to the corresponding sub-
graphs in the QDFG visualization, DAVAST assigns a unique
color to each activity and paints the respective nodes and
edges with this color, if they are part of the correspond-
ing data flow pattern (Fig. 5c). In cases where an edge or
node relates to multiple activity patterns, it is painted with
a stripe pattern containing all relevant activity colors.

For the special case where one or more nodes and edges
are detected to be associated with a known malign activity
pattern, these edges and nodes are colored in red. All other
nodes and edges are visually faded by ignoring their asso-
ciated activity colors, and painted in a light gray instead.
This directly draws the attention of the human operator to
the interactions that are considered malicious (Fig. 8).

For presentation purposes, all node labels are kept as short
as possible to prevent overly large nodes. This means that

(a) Timestep t (b) Timestep t+1 (c) Timestep t+2

Figure 6: Graph View - Chronologically browsing through interactions in TimeMachine mode

for file nodes, instead of directly showing the fully quali-
fied name of the file, only the file name without its path is
depicted within the node.

When interested in all details of a specific node, users can
expand a details panel (Fig. 5d), which contains all available
context information associated with the node, including a
colored activity legend to clarify the color-activity mapping.

To further increase the usability and comprehensibility of
the Graph View the visualization in a purpose-driven way,
DAVAST features extensive filtering capabilities to e.g. fil-
ter certain node or edge types from the visualization, or
to assign visual tags to single nodes that are persistently
maintained throughout all graph slices to help to track and
quickly identify nodes in-between different slices.

As additional means to track flows of data across individ-
ual graph slices, DAVAST includes a reachability analysis
feature. For each node in a graph slice, a user can trigger
a reachability analysis, which generates a new graph that
only contains nodes and edges that are directly or indirectly
reachable by the selected source node, under consideration
of the inherent temporal information associated with the
graph edges. This analysis can also be conducted in back-
ward mode where the new graph contains all nodes and edges
that can directly or indirectly reach the selected target node.

The reachability analysis usually reduces graph complex-
ity quite a lot as it filters all nodes that are irrelevant for a
specific sequence of flows and thus eases comprehensibility
of the visualization. We consider this to be a useful tool
for forensic purposes whenever one e.g. wants to asses the
worst-case impact of a potentially malicious process (for-
ward analysis), or wants to isolate potential sources of a
suspected infected file (backward analysis).

Finally, DAVAST’s Graph View also includes a so-called
TimeMachine mode where users can browse through the
temporal dimension of the graph in a step-by-step manner.
This is done via a keyboard-controlled step-by-step construc-
tion of the currently active graph slice.

If the TimeMachine mode is active, the Graph View ini-
tially only shows the edge and connected nodes with the
smallest time stamp in the corresponding time interval. By
repeatedly pushing the arrow keys, the user can add or
remove additional edges at the granularity of single time
stamps. The current edge is colored gold, which allows to
conveniently follow the sequence of interactions over time.

Figure 6 shows a brief excerpt of a graph slice in time

machine mode that visualizes the interaction of a Firefox
browser process with other system entities.

5. APPLICATION
In the following we present three scenarios where our ap-

proach can be useful to understand malicious behavior. In
particular we show, how the visualization supports manual
root-cause analysis or verification of reported alarms.

The examples are also shown in a demo video provided at
https://www22.in.tum.de/fileadmin/demos/

activity_monitor/ActivityMonitor_Demo.mp4.
Drive-by Malware Infection. An increasing threat is

the proliferation of so-called drive-by malware infection at-
tacks. To evaluate the usefulness of our approach, we locally
installed a malicious web application exploiting a Flash vul-
nerability, resulting in a drive-by infection. The matched
pattern corresponds to the process iexplorer.exe binding
a shell (cmd.exe) to it, which is considered as malicious.
This is detected by our approach, which allows analysts to
understand the infection process as depicted in Fig. 7.

Email Worm Infection. In this scenario we open a ma-
licious compressed attachment with Thunderbird. We then
uncompress the file and execute it, resulting in an infection.
As depicted in Fig. 8, we see that the malicious process
replicates itself, which is detected by our library of mali-
cious behaviour patterns. The replication pattern checks if
process creates child processes or executable files of roughly
the same size of the originator. A human analyst can then
understand the root cause and the steps before the infection,
since the pattern highlights the flow of data from Thunder-
bird until the self-replication. In the example, process node
invoice.exe creates two new processes named cpsdv.exe.
Data Leakage. For forensics purposes, we consider the

following scenario: an insider or attacker tries to copy big
amounts of sensitive data to a remote server. If such trans-
fers only rarely happen, which likely is the case for cases
of data theft, a typical Statistics View for such a scenario
would likely look as depicted in Figure 9. While the ratios
of most of the benign activities are almost constant, we can
clearly see two spikes for the HTTP Upload activity pattern.
We consider such a profile typical for cases of irregular data
leakage and easy to spot by human analysts. Such an initial
suspicion based on the Statistics View can then be a start-
ing point for further forensic investigations, for instance by
exploring the related Graph View.

https://www22.in.tum.de/fileadmin/demos/activity_monitor/ActivityMonitor_Demo.mp4
https://www22.in.tum.de/fileadmin/demos/activity_monitor/ActivityMonitor_Demo.mp4

Figure 7: Drive-by Malware Infection

Figure 8: Email Worm Infection

Figure 9: Data Leakage

6. DISCUSSION AND CONCLUSION
We have presented DAVAST, a visualization approach to

help security analysts understand potentially malign activ-
ity. We provide different graphical views that consolidate
data on system-wide data flow activity. This data is used to
detect and further investigate potentially malicious behav-
ior based on patterns. Identified malign behavior is visually
highlighted to ease human analysis.

Our monitor implies an execution overhead of about 20%
[11]. The analysis of a graph slice containing 1000 edges
(which corresponds to a typical system usage of about 1h)
is achieved under 1 second [10]. The visualization of such
a graph slice takes between 2 and 5 seconds. We take this
as first evidence for our intuition that our approach scales
because of graph slicing, simplification, and aggregation.

We are currently extending our work in three ways: a)
by improving the detection strategy, for instance by min-
ing malicious patterns which can result in a more accurate
analysis, b) by improving the visualization based on feed-
back by security experts, which we do in cooperation with
an industry partner, and c) by improving the graph view
through usage of advanced layout and filtering strategies as
e.g. mentioned in [8].

7. REFERENCES
[1] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.

A (sub) graph isomorphism algorithm for matching
large graphs. Trans. on Pattern Analysis and Machine
Intelligence, pages 1367–1372, 2004.

[2] E. Glatz. Visualizing host traffic through graphs.
VizSec ’10, pages 58–63, 2010.

[3] Q. Liao, A. Striegel, and N. Chawla. Visualizing graph
dynamics and similarity for enterprise network security
and management. VizSec ’10, pages 34–45, 2010.

[4] E. Lovat, J. Oudinet, and A. Pretschner. On
quantitative dynamic data flow tracking. In
CODASPY ’14, pages 211–222, 2014.

[5] L. Nataraj, S. Karthikeyan, G. Jacob, and
B. Manjunath. Malware images: visualization and
automatic classification. In VizSec ’11, page 4, 2011.

[6] D. A. Quist and L. M. Liebrock. Visualizing compiled
executables for malware analysis. In VizSec ’09, pages
27–32, 2009.

[7] P. Trinius, T. Holz, J. Gobel, and F. C. Freiling.
Visual analysis of malware behavior using treemaps
and thread graphs. In VizSec ’09, pages 33–38, 2009.

[8] F. van Ham and A. Perer. Search, show context,
expand on demand: Supporting large graph
exploration with degree-of-interest. Transactions on
Visualization and Computer Graphics, 15(6):953–960,
2009.

[9] Y. Wu and R. H. Yap. Experiments with malware
visualization. In DIMVA ’13, pages 123–133. 2013.

[10] T. Wüchner, M. Ochoa, and A. Pretschner. Malware
detection with quantitative data flow graphs. In
ASIACCS ’14, pages 271–282, 2014.

[11] T. Wüchner and A. Pretschner. Data loss prevention
based on data-driven usage control. In ISSRE ’12,
pages 151–160, 2012.

[12] Y. Xia, K. Fairbanks, and H. Owen. Visual analysis of
program flow data with data propagation. In VizSec
’08, pages 26–35. 2008.

	Introduction
	Related Work
	Preliminaries
	Approach
	Architecture
	Visualization and Interaction
	Activity Tree View
	Timeline View
	Statistics View
	Graph View

	Application
	Discussion and Conclusion
	References

